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Abstract—Iterative reweighted methods for sparse recovery and low-
rank matrix estimation have been flourished in recent years. As it has
been shown, these approaches offer significant merits when it comes
both to the recovery performance and the computational efficiency of
the derived algorithms. On the other hand, the use of low-rank matrix
factorization for encoding low-rankness has been pivotal in numerous
machine learning applications that involve big and high dimensional data
lately. In this work, a novel iterative reweighted approach for low-rank
matrix factorization is presented. The proposed approach gives rise to
scalable algorithms for Schatten-p norm minimization with 0 < p ≤ 1.
The efficiency of the resulting schemes is empirically verified in a matrix
completion problem.

I. INTRODUCTION

Low-rank matrix factorization (LRMF) has been at the heart of
several signal processing and machine learning applications over the
past few years. LRMF appears in the modeling process of ubiquitous
learning tasks such as blind source separation, dictionary learning,
subspace learning, etc., [1]. At the same time LRMF offers an
efficient way in an effort to find low-rank representations of large-
scale and high-dimensional data. The latter has recently given rise
to a huge bulk of research works whose primary goal is to provide
scalable algorithms for low-rank matrix estimation.

Iterative reweighted methods are old, but they have been recently
utilized for seeking parsimonious representations of data. In the
seminal work reported in [2], iterative reweighted least squares
(IRLS) was put forth for sparse vector recovery providing an efficient
alternative to traditional `1 norm minimization. The IRLS rationale
has been recently extended for low-rank matrix estimation in [3],
[4]. As it was shown, the resulting algorithms offer competitive
runtimes and improved recovery performance as compared to nuclear
norm minimization algorithms. In [5], an iterative reweighted type
algorithm has been developed to solve a nonconvex and nonsmooth
low-rank promoting minimization problem offering improved low-
rank matrix recovery results than relevant convex apporaches.

Capitalizing on the advent of iterative reweighted approaches,
herein we propose a novel framework for iterative reweighted low-
rank matrix factorization. The proposed approach is applied on tight-
upper bounds of Schatten-p norms leading to efficient alternative
closed-formed updates for the matrix factors at a low computational
cost. The resulting algorithms are singular value decomposition
(SVD) free and as is empirically shown for the case of matrix com-
pletion, they offer promising results in terms of recovery performance
and runtime.

II. PROBLEM FORMULATION

LRMF methods are based on the fact that a low-rank matrix can
be expressed as X = UVT (U ∈ Rm×r,V ∈ Rn×r) with the
inner dimension r of the involved matrices quite smaller than the
outer dimensions, i.e., r � min(m,n). An inherent weakness of
this approach is that an additional variable is coming up, i.e., the
inner dimension r of the factorization that must be learned from the
data. In that vein, among other LRMF approaches, the minimization

of a tight upper-bound of the nuclear norm defined as
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has been widely adopted, [1], [6], where d is an overestimate of r,
ui and vi are the ith columns of U and V and ‖·‖∗, ‖·‖2 denote the
nuclear and the `2 norms, respectively. We may generalize the above
result for the Schatten-p norm (the proof is based on arguments of
[7] and is not provided due to space limitations.).

Proposition 1: Schatten-p norms are bounded above as follows,
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where ‖ · ‖Sp is the Schatten-p norm and 0 < p ≤ 1.
By using (2) the matrix completion problem is written as follows,

min
U,V
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where ‖ · ‖F is the Frobenius norm, and PΩ denotes the sampling
operator on the set Ω of indexes of data matrix Y where information
is available.

III. THE ITERATIVE REWEIGHTED TYPE ALGORITHM

Next, we apply ideas stemming from iterative reweighting methods
for low-rank matrix recovery and rewrite the regularization term in
(3) as the sum of reweighted Frobenius norms, i.e.,
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with W(U,V) defined as

W(U,V) = diag
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The resulting Algorithm 1, arises by minimizing (4) w.r.t. matrix
factors U and V in an alternating fashion, making use of the typical
IRLS scheme, [8].

IV. A MATRIX COMPLETION EXPERIMENT

Next we aim at illustrating the behavior of the proposed Algorithm
1 when it comes to the estimation performance and the speed of
convergence for p = 1

2
. In this regard, for the case of the 100K

Movielens dataset, the state-of-the-art IRNN [5] and softImpute-ALS
[6] algorithms are utilized for comparison purposes (Fig. 1).



Algorithm 1: Alternating iterative reweighted least squares matrix completion (AIRLS-MC) algorithm
Input: Y, λ
Initialize: k = 0,U0,V0,W(U0,V0)

repeat
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k = k + 1
until convergence
Output: Û = Uk+1, V̂ = Vk+1
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Fig. 1. NMAE vs time evolution (up to 100secs) of the proposed , softImpute-
ALS [6] and IRNN [5] on the Movielens 100K validation dataset. AIRLS-MC
achieved lower NMAE than its matrix factorization counterpart softImpute-
ALS and slightly lower NMAE than IRNN. Moreover, AIRLS-MC required
less runtime than both softImpute-ALS and IRNN.
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