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a b s t r a c t 

Extracting the underlying low-dimensional space where high-dimensional signals often reside has been 

at the center of numerous algorithms in the signal processing and machine learning literature during 

the past few decades. Moreover, working with incomplete large scale datasets has recently been com- 

monplace for diverse reasons. This so called big data era we are currently living calls for devising online 

subspace learning algorithms that can suitably handle incomplete data. Their anticipated goal is to recur- 

sively estimate the unknown subspace by processing streaming data sequentially, thus reducing compu- 

tational complexity. In this paper, an online variational Bayes subspace learning algorithm from partial 

observations is presented. To account for the unawareness of the true rank of the subspace, commonly 

met in practice, low-rankness is explicitly imposed on the sought subspace data matrix by exploiting 

sparse Bayesian learning principles. Sparsity, simultaneously to low-rankness, is favored on the subspace 

matrix by the sophisticated hierarchical Bayesian scheme that is adopted. The proposed algorithm is thus 

adept in dealing with applications whereby the underlying subspace may be also sparse. The new sub- 

space tracking scheme outperforms its state-of-the-art counterparts in terms of estimation accuracy, in a 

variety of experiments conducted on both simulated and real data. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Recent years are by all means characterized by the vast

mounts of data, commonly named with the blanket term big

ata , generated by a wealth of sources such as social media, en-

ironmental monitoring sensors, medical application devices, e-

ommerce sites etc. to mention just a few. In first place, hav-

ng at hand a lot of data seems to be fairly advantageous. How-

ver, enjoying the merits emerging from this so called data del-

ge raises a number of issues needed to be properly addressed.

mong other things, computational complexity and memory stor-

ge requirements are undoubtedly two basic aspects needed to be

arefully taken into consideration in the challenging task of devis-

ng appropriate processing tools for extracting useful information

rom big data. 

Detecting the underlying low-dimensional space (subspace)

here high-dimensional data reside, is at the heart of several

ignal processing and machine learning tasks, such as network
∗ Corresponding author. 
∗∗ This work was supported by the PHySIS Project under Contract 640174 within 

he H2020 Framework Program of the European Commission. 
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nomalies detection, [1] , image denoising, [2,3] , direction of arrival

DOA) estimation, [4] , etc. Batch methods such as the celebrated

CA, which indubitably holds a prominent position in the family

f this kind of algorithms, face considerable difficulties since a)

heir computational complexity scales with the size of the available

easurement data and b) they require the storage of the whole

unch of data in memory. Therefore, its application is becoming

ractically prohibitive in the big data scenario under study. In light

f this, online subspace estimation (tracking) algorithms, that first

ame into the scene in the 1970s, [5,6] , have nowadays regain their

opularity, [4,7,8] . These tools build upon the hypothesis that da-

ums are sequentially arriving and thus the unknown subspace is

daptively estimated each time a new data sample becomes avail-

ble. Interestingly, this premise, besides reducing the computa-

ional complexity, leads to schemes with no need of storing data in

emory. Moreover, in a variety of applications dealing with large

cale datasets, datums to be processed are partly observed i.e., a

raction of them might be missing. Depending on the case, incom-

lete datasets may result either from applying compressed sens-

ng ideas in an effort to facilitate or account for failures in the

ata acquisition process, [9,10] or from the inherent nature of sig-

als met in disparate applications, e.g. collaborative filtering, [11] ,

http://dx.doi.org/10.1016/j.sigpro.2017.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.02.003&domain=pdf
mailto:parisg@noa.gr
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1 A preliminary version of a part of this work was presented in [26] . 
image reconstruction [12] , etc. Consequently, algorithms that per-

form subspace tracking from (possibly highly) incomplete data

have flourished notably in the last few years. 

1.1. Related work 

Along those lines, the GROUSE algorithm, which brings forth an

approach based on stochastic gradient descent on the Grassmanian

manifold of subspaces, has been presented in [7] . Since stochastic

approximation is at the core of GROUSE, its computational com-

plexity classifies it to the low-complexity subspace tracking al-

gorithms, [13] . Local and global convergence of GROUSE to the

global minimum has been recently theoretically proved in [14] and

[15] , respectively. In [4] , a second order subspace tracking algo-

rithm, of similar computational complexity to GROUSE, dubbed PE-

TRELS, has been presented. PETRELS is an unconstrained alternating

minimization recursive least squares (RLS)-type algorithm, building

upon the seminal PASTd subspace tracking algorithm, [16] , and ex-

tending it for handling missing data. A common characteristic of

both the aforementioned algorithms is the rather strong assump-

tion that the true rank of the sought subspace is known in ad-

vance. This shortcoming, which makes PETRELS exhibit an unsta-

ble behavior in case the assumption does not hold, is addressed in

[17] , where two different algorithms are described. Therein, an up-

per bound of the nuclear norm is favorably employed for imposing

low-rankness on the unknown subspace matrix, thus robustifying

the algorithms in the challenging yet realistic scenario of lacking

the knowledge of the subspace rank. In that vein, Algorithm 1 of

Mardani et al. [17] is introduced, deriving from an alternating min-

imization strategy on an exponentially weighted regularized cost

function. In addition, a more efficient in terms of computational

complexity Algorithm 2 is presented, based on a stochastic gradi-

ent descend approach. 

In a Bayesian framework, low-rank subspace estimation from

incomplete data has been recently dealt with in [18] . Through

an elegant joint column sparsity promoting mechanism, originally

proposed in [19] in the context of nonnegative matrix factoriza-

tion, the initially selected subspace rank is progressively reduced,

tending to the true rank of the unknown subspace. In [18] , group

sparsity promoting Student-t type priors are employed and the

variational Bayes method [20] is used for inference. In a similar

vein, in [21] , a Bayesian approach based on generalized approxi-

mate message passing for addressing the bilinear inference prob-

lem was presented. However, the subspace estimation algorithms

developed in [18,21] are of a batch type and thus are incapable to

process in the end high volumes of incomplete streaming data. 

1.2. Contribution 

Capitalizing on our previous work on online (group) sparse lin-

ear regression [22,23] and leveraging the low-rank promotion idea

presented in [19] , we devise a new online sparse and low-rank

subspace estimation algorithm, termed OVBSL, that learns from in-

complete data. After the statement of the problem ( Section 2 ), the

followed methodology consists of a) the definition of an appropri-

ate Bayesian model for the problem at hand ( Section 3 ), b) the

use of the variational Bayes inference method to solve the prob-

lem via a batch iterative scheme Section 4 ) and c) the derivation

of an online algorithm with a suitable extension and modification

of the batch algorithm ( Section 5 ). It is worth emphasizing that in

this paper the proposed Bayesian model incorporates exponentially

weighted data and parameter priors, which facilitate online infer-

ence in a time-varying environment. Moreover, departing from the

Bayesian subspace estimation scheme of Babacan et al. [18] , multi-

ple sparsity constraints are imposed on the subspace matrix in the

form of appropriate Gaussian scale mixture priors, in order for the
roposed scheme to be capable of addressing the sparse dictionary

earning problem, [8,24] . 

In Section 6 , the relevance of OVBSL to the deterministic PE-

RELS and Algorithm 1 of [17] is brought to light within a max-

mum a posteriori (MAP) framework arising from our adopted hi-

rarchical model. It is favorably illuminated that from a deter-

inistic point of view OVBSL departs from the unconstrained RLS-

ype PETRELS algorithm and likewise the algorithms of Mardani

t al. [17] can be deemed as an algorithm closely associated with

he minimization of an exponentially weighted regularized least

quares cost function. However, the key difference to the algo-

ithms of Mardani et al. [17] is that instead of utilizing the upper-

ound of the nuclear norm introduced in [25] , low-rankness on

he subspace matrix is now aptly provoked by the group-sparsity

nducing � 2 / � 1 norm. As far as the computational complexity of

VBSL is concerned, by virtue of the statistical independence im-

osed on the elements of the subspace matrix, it is similar to that

f GROUSE, PETRELS and the stochastic approximation type Algo-

ithm 2 of Mardani et al. [17] and lower than that of the second-

rder Algorithm 1 of Mardani et al. [17] . 

OVBSL shares the compelling characteristic of all Bayesian ap-

roaches, that is, it is fully automated. Thus, contrary to its de-

erministic state-of-the-art rivals, herein no tuning parameter is

equired. Moreover, since all parameters are treated as variables,

VBSL instead of point estimates, provides the sufficient statistics

f the probability distributions of all the involved parameters, thus

ffering more valuable supplementary information, compared to its

eterministic counterparts. As demonstrated on simulated and real

ata experiments in Section 7 , it presents superior estimation per-

ormance than the three most related state-of-the-art algorithms

escribed earlier. To validate this, online matrix completion and

either sparse or non sparse) subspace recovery from missing data

re simulated as case studies. Finally, the hyperspectral image re-

onstruction and the eigenface learning problems are examined,

orroborating the effectiveness and higher reconstruction perfor-

ance of OVBSL on real data. 1 

.3. Notation 

Column vectors are represented as boldface lowercase letters,

.g. x , and matrices as boldface uppercase letters, e.g. X , while, un-

ess otherwise explicitly stated, x i is the i th element of x and x ij 
he ij th element of X . In particular, small boldface calligraphic let-

ers are used to denote columns of a matrix X (i.e. x i ) and regular

oldface letters to denote rows, that is x T 
j 

and ( ·) T denotes transpo-

ition. Moreover I k is the k × k identity matrix, ‖·‖ 2 is the standard

 2 -norm, ‖·‖ F stands for the Frobenius norm, ‖·‖ ∗ is the nuclear

orm, � denotes Hadamard entrywise product, 〈·〉 is the expec-

ation operator, diag( x ) denotes a diagonal matrix whose diagonal

ntries are the elements of x , diag( X ) is a column vector whose en-

ries are the diagonal elements of the square matrix X , Trace( X ) is

he trace of the square matrix X , | X | its determinant and span( X ) is

he range (column space) of matrix X . Finally, N (x ;μ, �) denotes

he Gaussian distribution with mean μ and covariance matrix �.

IG (x ; p, a, b) is the one-dimensional generalized inverse Gaussian

istribution defined as 

IG (x ; p, a, b) = 

(a/b) p/ 2 exp 

[
(p − 1) log x − (ax + 

b 
x 
) / 2 

]
2 K p ( 

√ 

ab ) 
, 

here x > 0, a > 0, b > 0, p is real, and K p (·) denotes the modified

essel function of second kind with p degrees of freedom. The pdf

f the Gamma distribution is 

(x ; ζ , τ ) = exp [ (ζ − 1) log x − xτ − log �(ζ ) + ζ log τ ] , 
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here �( ·) is the gamma function, while 

G (x ; ζ , τ ) = exp 

[ 
−(ζ + 1) log x − τ

x 
− log �(ζ ) + ζ log τ

] 
s the inverse Gamma distribution. 

. Problem statement 

Let n be the time-index and y ( n ) a sequence of high-

imensional K × 1 vectors of observations that lie in a linear low-

imensional subspace of rank r ( n ) with r ( n ) � K . Both the linear

ubspace and its rank may be time-varying. Accordingly, the obser-

ations at time n can be expressed as, 

 (n ) = U (n ) c (n ) , (1)

here U ( n ) is a K × r ( n ) matrix whose columns span the underly-

ng data subspace and vector c ( n ) contains the coefficients of y ( n )

n this subspace. Since, in general, the true rank r ( n ) of U ( n ) is un-

nown and in order to account for noisy observations, we may as-

ume that our data are produced based on the following linear re-

ression model 

 (n ) = W (n ) x (n ) + e (n ) , (2)

here W ( n ) is a K × L subspace matrix with K � L ≥ r ( n )

nd span( U ( n )) ⊆span( W ( n )). Moreover, in (2) , the L × 1 vector

 ( n ) is the low-dimensional representation of y ( n ) in the subspace

panned by the columns of W ( n ) and e ( n ) is additive Gaussian

oise. In other words, besides the noise, a reasonable overestimate

f the true rank of the unknown data subspace is considered in

ur data generation model. 

To generalize our model, we further assume that a) the un-

nown subspace matrix W ( n ) may be sparse, a condition appearing

n several applications and b) part of the entries of y ( n ) are miss-

ng. The latter means that what we actually have is not y ( n ), but

 ( n ), where 

 (n ) = φ(n ) � y (n ) = �n y (n ) . (3) 

n (3) , φ( n ) is a {0, 1}-binary K × 1 vector having 0’s at the posi-

ions where y ( n ) has missing entries and 1’s elsewhere and �n =
iag (φ(n )) . If we now stack together observation vectors (with

ossible missing elements) up to time n , as rows in a n × K matrix

 ( n ), yields 

 (n ) = �(n ) � Y (n ) = �(n ) �
(
X (n ) W 

T (n ) + E (n ) 
)
, (4)

here 

 (n ) = [ z (1) , z (2) , . . . , z (n ) ] 
T = [ z 1 (n ) , z 2 (n ) , . . . , z K (n )] , (5) 

 (n ) = [ y (1) , y (2) , . . . , y (n ) ] 
T = [ y 1 (n ) , y 2 (n ) , . . . , y K (n )] , (6) 

(n ) = [ φ(1) , φ(2) , . . . , φ(n )] T = [ ϕ 1 (n ) , ϕ 2 (n ) , . . . , ϕ K (n )] , 
(7) 

 (n ) = [ x (1) , x (2) , . . . , x (n ) ] 
T = [ x 1 (n ) , x 2 (n ) , . . . , x L (n )] (8) 

nd E (n ) = [ e (1) , e (2) , . . . , e (n )] T . In addition, we define the sub-

pace matrix W ( n ) row- and columnwise as 2 

 (n ) = [ w 1 (n ) , w 2 (n ) , . . . , w K (n ) ] 
T = [ w 1 (n ) , w 2 (n ) , . . . , w L (n ) ] . 

(9) 

t can be noticed from Eqs. (5) –(9) that the row size of matri-

es Z ( n ), Y ( n ), �( n ) and X ( n ) increases with time, while W ( n ) is

 time-varying fixed size K × L matrix. 
2 Recall that in (5) –(9) , small boldface calligraphic letters have been used to de- 

ote columns of matrices and regular boldface letters to denote rows. 

o

o

The goals of this work are a) the estimation and tracking of the

nderlying low-dimensional subspace where measurement data 

eside, b) the estimation of the low-rank representation of data in

his subspace in time and, as a by-product, c) the recovery of the

omplete measurement data matrix Y ( n ) via online matrix comple-

ion. In this context, given the batch of incomplete data Z ( n ), we

im at estimating the unknown low-rank subspace matrix W ( n )

nd the latent matrix of projections X ( n ) in this subspace. How-

ver, in case of streamingly received data, the use of a batch iter-

tive solver entails the processing of the whole bunch of data that

re available up to every time instant, rendering the whole proce-

ure computationally prohibitive and thus practically infeasible. A

ay to alleviate this impediment is by employing online data han-

ling, whereby incomplete observation vectors z ( n ) are acquired

nd processed sequentially to learn and track W ( n ) and provide

stimates of the vectors of coefficients x ( n ). 

In the following, we tackle the aforementioned problem using a

ayesian approach. First, an appropriate Bayesian model is defined

hat effectively promotes the low-rankness of the sought subspace

hrough column sparsity inducing Laplace priors. As it will be-

ome clear below, the adopted modeling aims at revealing the true

ata subspace (spanned by the columns of U ( n )) and its true rank

 ( n ), starting from an overestimate L of it. Based on the proposed

ayesian model, a variational Bayes batch iterative subspace esti-

ation algorithm is developed, which after suitable adjustments

eads to an efficient online subspace learning scheme. 

. The proposed Bayesian model 

To develop a Bayesian inference method, first a Bayesian model

ust be defined consisting of a) the likelihood function of the data

nd b) suitable priors assigned to the parameters of the model. The

ikelihood function of the observed data depends on the statisti-

al properties of the additive noise, which is commonly taken to

e Gaussian with zero mean and constant variance. In this work,

n order to place more importance on recent data and downgrade

lder measurements which is meaningful under time-varying con-

itions, we employ a so-called forgetting factor λ with 0 � λ < 1

nd define the noise distribution as, 3 

 (n ) = 

n ∏ 

i =1 

N (e (i ) | 0 , β−1 λi −n I K ) , (10)

here β is a noise precision parameter, while we define 

�( n ) = diag 

([
λn −1 , λn −2 , . . . , λ, 1 

]T 
)
. (11) 

n the following, whenever not necessary, the time index n is

mitted to simplify derivations. The time index is reestablished in

ection 5 , where the new online subspace estimation algorithm is

resented. In this context, based on (4) and the noise distribution

iven in (10) , the likelihood function of the measurement data is

xpressed as 

p(Z | X , W , β) = 

n ∏ 

i =1 

p(z (i ) | x (i ) , W , β) 

= 

n ∏ 

i =1 

∏ 

k ∈I φ(i ) 

N (z k (i ) | w 

T 
k x (i ) , β−1 λi −n ) , (12) 

here I φ(i ) is the set of indices for which the corresponding en-

ries of φ( i ) are 1. 
3 From (10) , more recent error vectors have smaller variance compared to older 

nes, which is equivalent to giving more reliability to recent measurements than to 

lder ones. 
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Fig. 1. Directed acyclic graph of the proposed Bayesian model. 
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Now that the likelihood function has been defined, we proceed

by presenting the prior distributions imposed on the subspace ma-

trix W and the coefficients matrix X . These priors aim at simul-

taneously decreasing the rank and imposing sparsity on the un-

known subspace matrix W . Recall that the matrix product XW 

T in

(4) is equivalently written as the sum of the outer products be-

tween the columns of X and W i.e., 

XW 

T = 

L ∑ 

l=1 

x l w 

T 
l . (13)

From (13) it is readily seen that the rank of the matrix XW 

T equals

to the number L of the rank-one terms existing into this summa-

tion. Hence, a natural approach to reduce the rank L of the sought

subspace is to somehow eliminate some of the rank-one contribut-

ing terms in (13) . A relevant scheme, [18] , reduces the rank by

imposing column sparsity jointly on X and W . Herein, as in [18] ,

this sparsity constraint is integrated in the modeling of the prior

distributions of x l and w l , as explained below. At the same time,

as stated earlier, in several applications (e.g. [27,28] ) the subspace

matrix W is required to be sparse. That said, joint sparsity on x l 
and w l and the sparse structure on subspace matrix W are simul-

taneously incorporated in the modeling process of the correspond-

ing prior distributions. In light of this, three-level hierarchical pri-

ors 4 are assigned to the columns of X and W . At the first level of

hierarchy the following Gaussian priors are defined, 

p(X | s , β) = 

L ∏ 

l=1 

N ( x l | 0 , β−1 s −1 
l 

�−1 ) , (14)

p(W | s , �, β) = 

L ∏ 

l=1 

N ( w l | 0 , β−1 s −1 
l 

�−1 
l 

) , (15)

where s = [ s 1 , s 2 , . . . , s L ] 
T , � = [ γ1 , γ2 , . . . , γL ] , γl = [ γ1 l , γ2 l , . . . ,

γKl ] 
T and �l = diag (γl ) for l = 1 , 2 , . . . , L . It can be observed from

(14) and (15) that the l th columns of X and W share the same

joint sparsity promoting parameters s l ’s. At the same time, the di-

agonal matrix �l which appears in the prior distribution of W is

responsible for independently imposing sparsity on the entries of

the l th column of the subspace matrix. 5 In particular, some of the

s l ’s take large values when Bayesian inference is performed and

as a result, both the l th columns of X and W are driven to zero.

Notably, in cases where a parameter s l does not enforce joint spar-

sity, the k th element of the l th column of W may be independently

led to zero by the corresponding subspace sparsity promoting pa-

rameter γ kl of �l . It should be also noted that the exponentially

weighting matrix � appears in the prior of X , but not in that of

W . This is so because in a streaming data environment the size of

X is time-increasing while the fixed-size data subspace matrix W is

estimated based not only on the most recent row x ( n ), but also on

the previous rows of X with appropriate weighting. On the other

hand, in such an online scenario, the current projection coefficients

vector x ( n ) shall be estimated only from the more recent estimate

of W , which, being fixed-size, does not have to be exponentially

weighted. 

The prior distribution of X in (14) can be written in an equiva-

lent form with respect to the rows of X as follows 

p(X | s , β) = 

n ∏ 

i =1 

N (x (i ) | 0 , β−1 λi −n S −1 ) , (16)
4 Hierarchical priors are required in order to ensure conjugacy with respect to the 

likelihood as well as among them, which is a prerequisite for deriving a tractable 

posterior inference procedure, [3,22] . 
5 In case W is not sparse, we set �l = I K in (15) and no prior applies to �, i.e. 

Eqs (18) and (20) are needless. 

4

 

g  

t  

a  
here S = diag (s ) . Note that it is the form of the prior in (16) that

s mainly used in the analysis of the next sections, although

14) serves in this section to show how the rank is reduced by the

roposed model. At the second level of the hierarchy we define the

ollowing conjugate inverse Gamma distributions for s and �, 

p(s | δ) = 

L ∏ 

l=1 

IG (s l | K + n + 1 

2 

, 
δl 

2 

) , (17)

p(� | P ) = 

K ∏ 

k =1 

L ∏ 

l=1 

IG (γkl | 1 , 
ρkl 

2 

) . (18)

here δ = [ δ1 , δ2 , . . . , δL ] 
T and P is the K × L matrix whose entries

re the ρkl ’s. Finally, at the third level of the hierarchy, conjugate

amma distributions are defined for the scale parameters δl ’s and

kl ’s, i.e. 

p(δl ) = G(δl ;μ, ν) (19)

p(ρkl ) = G(ρkl ;ψ, ξ ) . (20)

By integrating out s from (14) and (15) using (17) with � kept

xed, we are led to a heavy-tailed multiparameter Laplace-type

istribution for the joint prior of X and W that promotes joint

olumn sparsity, as is shown in Appendix B . Similarly, by fixing

 , from (15) and (18) we get a multiparameter Laplace prior that

mposes sparsity on W . 

The proposed Bayesian model is concluded by assigning a con-

ugate to the likelihood Gamma prior to the precision of the noise

as follows, 

p(β) = G(β;κ, θ ) . (21)

t should be noted that the proposed Bayesian model, which is

uilt upon the likelihood (12) and the priors (14) –(21) , differs con-

iderably and improves over the relevant model reported in [18] .

he novelties of the new model come from a) the promotion of

parsity on W aside from low-rank through the use of the param-

ter matrix �, b) the (necessary for online processing) exponential

eighting of the data by incorporating a forgetting factor in the

ikelihood and the prior of X and c) the adoption of Laplace-type

arginal priors for X and W , instead of Student-t used in [18] ,

n order to promote sparsity and low-rankness. In the next sec-

ion, based on the multi-hierarchical model described in this sec-

ion and presented graphically in Fig. 1 , an approximate Bayesian

nference scheme is derived for low-rank sparse subspace learning

rom partial observations. 

. Batch variational Bayes inference 

Inferring the joint posterior distribution of multiple variables

iven the data boils down to an intractable process when it comes

o composite Bayesian models, such as those springing from hier-

rchical dependences of the involved variables, which are modeled
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y suitable priors. This is also the case for the Bayesian model de-

cribed in the previous section, and graphically depicted in Fig. 1 .

ollowing the Bayes’ theorem, the exact joint posterior of our vari-

bles given the observations is obtained by 

p(X , W , s , �, δ, P , β | Z ) 

= 

p(Z , X , W , s , �, δ, P , β) ∫ 
p(Z , X , W , s , �, δ, P , β) d X d W d s d �d δd P d β

. (22) 

pparently, getting a closed form expression for the posterior given

n (22) involves the daunting task of estimating the integral at the

enominator. To obviate obstacles of this type, plentiful approxi-

ate inference schemes have come to light in literature, [29,30] .

erein, the ubiquitous variational Bayes inference approach is

dopted, [20] . The basic premise of this approach inspired from

he field of statistical physics is the assumption that the poste-

ior distribution can be approximately expressed in a factorized

orm. Based on this particular hypothesis, the exact joint posterior

p(X , W , s , �, δ, P , β | Z ) is approximated by q (X , W , s , �, δ, P , β) ,

efined as 

 (X , W , s , �, δ, P , β) = q (β) 
n ∏ 

i =1 

q (x (i )) 
K ∏ 

k =1 

L ∏ 

l=1 

q (w kl ) 
L ∏ 

l=1 

q (s l ) 

×
L ∏ 

l=1 

q (δl ) 
K ∏ 

k =1 

L ∏ 

l=1 

q (γkl ) q (ρkl ) . (23) 

rom (23) it is easily noticed that there has been considered full

tatistical a posteriori independence among the rows of X , as well

s among all the elements of the subspace matrix W . As far as

 ( i )’s are concerned, being statistical independent is something

hat is naturally brought up due to the presumed independence

mong the corresponding observation vectors z ( i )’s. On the other

and and in contrast to previous related works (e.g. [18] ), posterior

ndependence is imposed on the entries of W in (23) . This gives

ise to coordinate-descent recursions for retrieving w kl ’s, which, as

hown later, reduces significantly the computational complexity of

he online subspace estimation task. Notably, as implied by (23) ,

hose explicit assumptions on the independence among the rows

f X and the elements of W dictate relevant statistical indepen-

ence on the variables of our model belonging to the second and

he third level of hierarchy, namely s, δ, � and P . 

In an attempt to bring to light the particular way

hat the posterior distributions q ( ·) ’s of all variables in

23) are recovered according to the variational Bayes scheme,

e define the cell array θ = { x (1) , · · · , x (n ) , w 11 , · · · , w nK ,

 1 , . . . , s L , γ11 , . . . , γKL , δ1 , . . . , δL , p 11 , . . . , p KL } . 6 The posterior distri-

ution q ( θ i ) of each component θ i is then obtained by minimizing

he Kullback–Leibler distance between the posterior i.e. p ( θ| Z ), and

he approximate one q ( θ) leading to the following closed-form

xpressions [20] 

 (θi ) = 

exp 

(〈 ln p(Z , θ) 〉 i � = j 
)

∫ 
exp 

(〈 ln p(Z , θ) 〉 i � = j 
)
dθi 

. (24) 

n the last equation 〈·〉 i � = j denotes expectation taken with respect

o all q ( θj )’s but q ( θ i ). Interestingly, through (24) the parameters

f each posterior q ( θ i ) are expressed in terms of the parameters

f the other distributions q ( θj )’s, for j � = i . Thus, the minimiza-

ion of the Kullback–Leibler distance gives birth to a cyclic itera-

ive scheme, whereby the parameters of each q ( θ i ) are computed

ased on the most recent estimates of the parameters of the rest

 ( θj )’s, as it will also become more clear below. This procedure

s applied for our three-level hierarchical Bayesian model and the

hole derivation is provided in Appendix A . 
6 Note that for notational convenience, the entries of θ i.e. the θi ’s may represent 

ither vectors or scalars. 

T

Q

Note that due to the novelty of the proposed Bayesian model

nd the assumed posterior independence of the entries of W , Eqs.

A .5) –(A .23) derived in Appendix A are new. The mutual depen-

ence among the moments of all the model parameters, that can

e easily observed in the respective expressions, paves the way for

n iterative scheme over the involved quantities. It should be em-

hasized though that since we aim at handling a massive amount

f streaming data, the utilization of those expressions ends up to

e a prohibitive task. More specifically, as the number n of the ob-

ervations increases, calculations that involve quantities such as Z,

 , become increasingly demanding in terms of the memory stor-

ge as well as the computational effort needed. In light of this,

n online scheme is presented in the next section, that favorably

djusts the above defined expressions to the streaming processing

cenario. 

. Online variational Bayes subspace estimation 

In this section we derive a new online variational Bayes algo-

ithm for sparse and low-rank subspace estimation from incom-

lete data. As shown below, moving from the batch to the online

cenario is not a trivial task. It requires the definition of appropri-

te fixed-size quantities that can be recursively updated and their

ombination with other formulas coming from the batch algorithm

n a cohesive scheme. According to the online scenario, incom-

lete high dimensional datums z ( n )’s are streamingly received at

ach time instance n . Then, the proposed algorithm proceeds by

) computing an estimate ˆ x (n ) of the coefficients vector of the

bservations on the subspace acquired in the previous iteration

i.e. ˆ W (n − 1) ) and next b) updating elementwise the subspace ma-

rix ˆ W (n − 1) to ˆ W (n ) . In the sequel, for notational convenience,

e disregard the expectation operator 〈·〉 . Then, with a slight but

traightforward abuse of notation and by handling the time index

ppropriately, we get from (A.2) to (A.4) , 

ˆ 
 (n ) = β(n − 1) �ˆ x (n ) ̂  W 

T (n − 1) z (n ) , (25) 

ˆ x (n ) = β−1 (n − 1) 

( 

ˆ W 

T (n − 1) �n ˆ W (n − 1) 

+ 

K ∑ 

k =1 

φk (n ) � ˆ w k 
(n − 1) + S (n − 1) 

) −1 

. (26) 

ext, we define the following fixed-size with respect to time quan-

ities, 

 (n ) = 

ˆ X 

T (n ) �(n ) Z (n ) , (27) 

 (n ) = 

ˆ X 

T (n ) �(n ) ̂  X (n ) + 

n ∑ 

i =1 

λn −i �ˆ x (i ) , (28) 

nd for k = 1 , 2 , . . . , K, 

 k (n ) = 

ˆ X 

T (n ) �(n ) Φk (n ) ̂  X (n ) + 

n ∑ 

i =1 

λn −i φk (i ) �ˆ x (i ) , (29) 

 k (n ) = z T k (n ) �(n ) z k (n ) . (30) 

he basic idea in any online scheme is the formulation of the var-

ous quantities that carry the past knowledge of the relevant pro-

ess in a time-recursive manner. Interestingly, Eqs. (27) –(30) can

asily be written in time-recursive forms i.e., 

 (n ) = λT (n − 1) + ̂

 x (n ) z T (n ) , (31) 

 (n ) = λQ (n − 1) + �ˆ x (n ) + ̂

 x (n ) ̂ x 

T (n ) , (32) 
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Table 1 

The OVBSL algorithm. 

Initialize : ˆ W (0) , S (0) , β(0) , �k (0) , � ˆ w k 
(0) , k = 1 , 2 , . . . , K

Set T (0) = 0 , P k (0) = 0 , d k (0) = 0 , k = 1 , 2 , . . . , K

Set μ = 10 −6 , ν = 10 −6 , ψ = 10 −6 , ξ = 10 −6 , κ = 10 −6 , θ = 10 −6 

Set Q (0) = 0 , λ

for n = 1 , 2 , . . . 

Get z ( n ), φ( n ) 

�ˆ x (n ) = β−1 (n − 1) 
(

ˆ W 

T (n − 1) �n ̂  W (n − 1) + 

∑ K 
k =1 φk (n ) � ˆ w k 

(n − 1) + S (n − 1) 
)−1 

ˆ x (n ) = β(n − 1) �ˆ x (n ) ̂  W 

T (n − 1) z (n ) 

�(n ) = �ˆ x (n ) + ̂

 x T (n ) ̂ x (n ) 

Q (n ) = λQ (n − 1) + �(n ) 

T (n ) = λT (n − 1) + ̂

 x (n ) z T (n ) 

for k = 1 , 2 , . . . , K, 

P k (n ) = λP k (n − 1) + φk (n ) �(n ) 

R k (n ) = P k (n ) + Γk (n − 1) S (n − 1) 

d k (n ) = λd k (n − 1) + z 2 
k 
(n ) 

for l = 1 , 2 , . . . , L, 

ˆ w kl (n ) = β(n − 1) σ ˆ w kl 
(n − 1) 

(
t lk (n ) − r T 

k ¬ l (n ) ̂ w k ¬ l (n ) 
)

σ 2 
ˆ w kl 

(n ) = β−1 (n − 1) r −1 
k,ll 

(n ) 

ρkl (n ) = 

2(ψ + 1) 

2 ξ + γ −1 
kl 

(n − 1) + ρ−1 
kl 

(n − 1) 

γkl (n ) = 

√ √ √ √ 

ρkl (n ) 

β(n − 1) s l (n − 1) 
(

ˆ w 

2 
kl 
(n ) + σ 2 

ˆ w kl 
(n ) 

)
end 

Set � ˆ w k 
(n ) = diag 

(
[ σ 2 

ˆ w k 1 
(n ) , σ 2 

ˆ w k 2 
(n ) , . . . , σ 2 

ˆ w kL 
(n )] T 

)
end 

for l = 1 , 2 , . . . , L, 

δl (n ) = 

2 μ + (1 − λ) −1 + K + 1 

2 ν + s −1 
l 

(n − 1) + δ−1 
l 

(n − 1) 

s l (n ) = 

√ 

β−1 (n − 1) δl (n ) 

ˆ w 

T 
l (n ) �l (n ) ̂ w l (n ) + 

∑ K 
k =1 γkl (n ) σ 2 

ˆ w kl 
(n ) + q ll (n ) 

end 

Set S (n ) = diag ([ s 1 (n ) , s 2 (n ) , . . . , s L (n )] T ) 

β(n ) = 

2 κ + 

1 
1 −λ ( K + L ) + KL (

2 θ + 

∑ K 
k =1 

(
d k (n ) − ˆ w 

T 
k 
(n ) t k (n ) + σT 

ˆ w k 
(n ) r k (n ) 

)
+ 

∑ L 
l=1 s l (n ) q ll (n ) 

)
end 
P k (n ) = λP k (n − 1) + φk (n ) 
(
�ˆ x (n ) + ̂

 x (n ) ̂ x 

T (n ) 
)
, (33)

d k (n ) = λd k (n − 1) + z 2 k (n ) . (34)

Moreover, for k = 1 , 2 , . . . , K, we define the following matrices

that stem from P k ( n )’s with the addition of appropriate diagonal

terms, 

R k (n ) = P k (n ) + �k (n − 1) S (n − 1) . (35)

Having aptly obtained the above computationally efficient formu-

las, we can now head for online processing. Towards this, the equa-

tions derived for the batch case are suitably modified by incor-

porating the previously defined recursively computed quantities.

More specifically, by substituting (A .8), (A .9) in (A .6), (A .7) respec-

tively and using (27), (29) and (35) we get the following time up-

date expressions for the entries of the subspace matrix estimate ˆ W

at time n , 

ˆ w kl (n ) = β(n − 1) σ 2 
ˆ w kl 

(n − 1) 
(
t lk (n ) − r T k ¬ l (n ) ̂  w k ¬ l (n ) 

)
, (36)

σ 2 
ˆ w kl 

(n ) = β−1 (n − 1) r −1 
k,ll 

(n ) , (37)

where t lk ( n ) is the lk th entry of the L × K matrix T ( n ), r T 
k ¬ l (n ) is

the l th row of L × L autocorrelation matrix R k ( n ) after neglecting

its l th element i.e. r k, ll and finally 

ˆ w k ¬ l (n ) = [ ̂  w k 1 (n ) , ˆ w k 2 (n ) , . . . , ˆ w kl−1 (n ) , 

ˆ w kl+1 (n − 1) , . . . , ˆ w kL (n − 1)] T . (38)

From (36) and (38) it is readily seen that each element of the k th

row of W is updated at each time instance n , taking into account

the most recent estimates of the remaining entries of the k th row

in a cyclic manner. It is worthy to mention that this emerging iter-

ative scheme, resulting from the espoused statistical independence

among the elements of W , can be viewed as a relevant to the cyclic

coordinate-descent strategy [31] . Following the same premise, for

the column sparsity promoting parameters we get from (A.11) , 

s l (n ) = 

√ 

β−1 (n − 1) δl (n ) 

ˆ w 

T 
l (n ) �l (n ) ̂  w l (n ) + 

∑ K 
k =1 γkl (n ) σ 2 

ˆ w kl 
(n ) + q ll (n ) 

, (39)

where q ll ( n ) is the l th diagonal element of Q ( n ). As for the hyper-

parameters δl ’s of the s l ’s we have from (A .16), (A .18) the following

recursive equation 

δl (n ) = 

2 μ + (1 − λ) −1 + K + 1 

2 ν + s −1 
l 

(n − 1) + δ−1 
l 

(n − 1) 
. (40)

Note that in (40) the size of the effective time window i.e. (1 −
λ) −1 , is used in place of n , as in [22] . For γ kl ’s that independently

favor sparsity on the entries of the subspace matrix W , in an online

scheme (A.13) takes the form, 

γkl (n ) = 

√ √ √ √ 

ρkl (n ) 

β(n − 1) s l (n − 1) 
(

ˆ w 

2 
kl 
(n ) + σ 2 

ˆ w kl 
(n ) 

) (41)

and for the hyperparameters ρkl ’s, (A.17) and (A.19) yield 

ρkl (n ) = 

2(ψ + 1) 

2 ξ + γ −1 
kl 

(n − 1) + ρ−1 
kl 

(n − 1) 
. (42)

β(n ) = 

(
2 θ + 

∑ K 
k =1 

(
d k (n ) − ŵ
inally, from (A.20) to (A.23) and applying some straightforward

lgebraic manipulations as in [22] , we end up with the following

fficient formula for computing the noise precision β , at each time

teration 

 

1 
1 −λ ( K + L ) + KL 

) t k (n ) + σT 
ˆ w k 

(n ) r k (n ) 
)

+ 

∑ L 
l=1 s l (n ) q ll (n ) 

) (43)

here ˆ w 

T 
k 
(n ) is the k th row of ˆ W (n ) , t k ( n ) is the k th column of

 ( n ), σ ˆ w k 
(n ) = diag (� ˆ w k 

(n )) and r k (n ) = diag (R k (n )) . 

As it can be seen, most of the above defined quantities resolve

o efficient time-updating formulas. In doing so, the need for tak-

ng into consideration the whole bunch of data, which is com-

utationally prohibitive in applications dealing with big data, is

liminated. By collecting and putting in a proper order the previ-

usly derived expressions, we are led to the new online variational

ayes sparse subspace learning (OVBSL) algorithm, which is sum-

arized in Table 1 . The algorithm provides at each time iteration

ot only the sought estimates ˆ x (n ) and 

ˆ W (n ) , but also estimates

or all parameters of the model described in Section 3 . Note also

hat all these parameters are directly linked to specific distribu-

ions through the posterior inference analysis of Section 3 . By care-

ully inspecting OVBSL in Table 1 , it can be shown that its compu-

ational complexity is O(| φ(n ) | L 2 + KL ) , where | φ( n )| is the num-

er of observed entries at time n . It should be emphasized that

 significant reduction in the computational complexity has been

chieved (which would be otherwise O(| φ(n ) | L 3 ) ) by adopting the
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lement-by-element estimation of ˆ W via a coordinate-descent type

rocedure. As shown in Table 1 , all hyperparameters of OVBSL are

et and fixed to very small values at the initialization stage of the

lgorithm, as is the custom in sparse Bayesian learning schemes

32] . This way, prior distributions become non-informative; in line

ith the fact that no information for the respective parameters is a

riori available. 7 Hence parameter fine tuning or cross-validation is

ntirely avoided and all parameters of the model are inferred from

he data, rendering the proposed algorithm ideally accustomed for

se in a real-time setting. In the next section the proposed algo-

ithm is set in a unified framework with other related state-of-

he-art techniques and its advantages in terms of performance and

omplexity are highlighted. 

. Relation with state-of-the-art 

In this section we investigate and highlight the connection of

he new Bayesian algorithm with two other closely related tech-

iques that have recently appeared in the literature, namely the

ETRELS algorithm presented in [4] and Algorithm 1 of Mardani

t al. [17] . All three algorithms under study are second-order on-

ine subspace learning schemes that deal with (possibly highly) in-

omplete data. Out of the three schemes, only the proposed algo-

ithm has the provision to impose sparsity to the unknown sub-

pace matrix. Hence, to make comparisons more clear we relax this

onstraint, that is we set �l = I K for l = 1 , 2 , . . . , L in our Bayesian

odel described in Section 3 . As we shall see below, this Bayesian

odel can be considered as a unified framework from which all

hree schemes may originate. To be more specific, let us first recall

he likelihood function of the model given in (12) , which can be

xpressed as 

p(Z | X , W , β) ∝ exp 

(
−β

2 

∥∥∥�
1 
2 (Z − � � (XW 

T )) 

∥∥∥2 

F 

)
. (44) 

ased on (44) , the maximum likelihood (ML) estimator is obtained

y minimizing w.r.t X and W the negative log-likelihood, resulting

n the following minimization problem 

(P1) min 

X , W 

β

2 

∥∥∥�
1 
2 (Z − � � (XW 

T )) 

∥∥∥2 

F 

he so-termed PETRELS algorithm presented in [4] solves (P1)

hrough an online alternating (between X and W ) least squares

LS) technique, which provides both the estimates of the subspace

atrix W ( n ) and the new vector of projection coefficients x ( n ) at

ach time iteration. However, by solving (P1) PETRELS does not

ake any special care for revealing the true rank of the sought

ubspace. The algorithm starts with an overestimate L of the rank

number of columns of W ) and the estimates returned by the algo-

ithm are related to a subspace of rank L , which may be far from

he true rank. 

Let us now consider the likelihood function given in (44) and

he first level (Gaussian) priors of X and W in our model given by

14) and (15) for s l = s, l = 1 , 2 , . . . , L, where s is a constant param-

ter and not a random variable that can be determined from data.

hen (14) and (15) are rewritten as, 

p(X | s, β) ∝ exp 

(
−β

2 

s 

∥∥∥�
1 
2 X 

∥∥∥2 

F 

)
, (45) 

p(W | s, β) ∝ exp 

(
−β

2 

s ‖ 

W ‖ 

2 
F 

)
. (46) 
7 Actually, since those parameters are placed in the third and the fourth level of 

ierarchy, their values have no crucial role on the estimation of parameters of our 

nterest i.e., the first level ones. 

a  

i  

d  

[  

w  
rom the likelihood (44) and the priors (45) and (46) the maxi-

um a-posteriori probability (MAP) estimator of X and W defined

s, 

in 

X , W 

{ − log p(X , W | Z ) } ≡ min 

X , W 

{− log [ p(Z | X , W , β) 

×p(X | s, β) p(W | s, β)] } , (47) 

s expressed as, 

(P2) min 

X , W 

β

2 

[∥∥∥�
1 
2 (Z − � � (XW 

T )) 

∥∥∥2 

F 
+ s 

∥∥∥�
1 
2 X 

∥∥∥2 

F 
+ s ‖ 

W ‖ 

2 
F 

]
. 

he minimization problem (P2) is at the heart of the analysis in

17] . Algorithm 1 of Mardani et al. [17] is a second-order alter-

ating ridge regression type scheme that solves (P2) sequentially

nd provides estimates of W ( n ) and x ( n ) at each time iteration. In

17] , to promote the low-rank data representation, the minimiza-

ion problem is originally formulated as 

(P2 

′ ) min 

V 
β

[
1 

2 

∥∥∥�
1 
2 (Z − � � V ) 

∥∥∥2 

F 
+ s 

∥∥∥�
1 
2 V 

∥∥∥
∗

]
. 

hen, in search for a nuclear-norm surrogate that would be

menable to online processing, || � 1 
2 V || ∗ in (P2 ′ ) is replaced by its

pper bound (|| � 1 
2 X || 2 F + || W || 2 F ) / 2 , with V = XW 

T , thus leading

o (P2). Even though, compared to PETRELS, a more direct promo-

ion of the low-rankness of the underlying subspace is employed

n [17] , again an overestimate L of the true rank is used and Algo-

ithm 1 of Mardani et al. [17] lacks a specific mechanism for im-

osing low-rankness explicitly by reducing the initial rank to the

rue rank as the algorithm evolves. In addition, special care should

e taken for the parameter s that must be properly selected and

pdated in the framework of an online scheme. 

Let us, finally, employ the complete Bayesian model of

ection 3 (with the exception of the subspace matrix sparsity pro-

oting parameters γ kl ’s which are set to 1). In such a case, as

hown in Appendix B , the joint prior of X and W can be expressed

s 

p(X , W | δ, β) ∝ exp 

( 

−β
1 
2 

L ∑ 

l=1 

δ
1 
2 

l 

(‖ 

x l ‖ 

2 
2 , � + ‖ 

w l ‖ 

2 
2 

) 1 
2 

) 

. (48) 

rom (44) and (48) the MAP estimator for X and W is now ob-

ained from the solution of the following minimization problem, 

(P3) min 

X , W 

[
β

2 

∥∥∥�
1 
2 (Z − � � (XW 

T )) 

∥∥∥2 

F 

+ β
1 
2 

L ∑ 

l=1 

δ
1 
2 

l 

(‖ 

x l ‖ 

2 
2 , � + ‖ 

w l ‖ 

2 
2 

) 1 
2 

] 

. 

ote that the regularizing summation term in (P3) corresponds to

he weighted � 2 / � 1 norm of the matrix [(�
1 
2 X ) T W 

T ] T [33] , which

s known to impose column sparsity [33] and thus explicitly reduc-

ng the rank of W , leading to more consistent estimates. Derived

rom the Bayesian model of Section 3 , the minimization prob-

em (P3) is closely related to the analysis and the algorithm pre-

ented in the current paper. It should be emphasized though that

he proposed algorithm is not a recursive alternating MAP estima-

ion scheme, but a variational Bayes type technique that can be

eemed as a generalization of the MAP approach. While a MAP

rocedure would provide the point estimates of the parameters of

nterest X and W , the proposed algorithm returns in addition the

pproximate distribution of all parameters involved in the model,

ncluding the weighting parameters δl ’s, which are now estimated

irectly from the data. Summarizing and compared to Chi et al.

4] and Mardani et al. [17] the proposed algorithm a) is equipped

ith an inherent mechanism for inducing column sparsity and
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Table 2 

Computational complexity and memory storage requirements of online subspace learning algorithms. 

Algorithm GROUSE [7] PETRELS [4] Algorithm 1 of Algorithm 2 of OVBSL 

Mardani et al. [17] Mardani et al. [17] 

Comp. complexity O(| φ(n ) | L 2 + KL ) O(| φ(n ) | L 2 ) O(| φ(n ) | L 3 ) O(| φ(n ) | L 2 + KL ) O(| φ(n ) | L 2 + KL ) 

Memory requirements O(KL ) O(KL 2 ) O(KL 2 ) O(KL ) O(KL 2 ) 
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s  

t  
thus reducing the rank of the latent subspace matrix dynamically

and b) is fully automatic as all parameters of the model are es-

timated from the data and thus any need for preselection (using

heuristics) or fine tuning is entirely avoided. 

In Table 2 , OVBSL is compared in terms of computational com-

plexity and memory storage requirements with other related state-

of-the-art algorithms. Besides PETRELS and Algorithm 1 of Mar-

dani et al. [17] mentioned above, two other algorithms are in-

cluded, namely GROUSE reported in [7] and Algorithm 2 of Mar-

dani et al. [17] , which is a first-order stochastic approximation type

scheme. We see from Table 2 that the proposed algorithm requires

less computations per iteration than Algorithm 1 of Mardani et al.

[17] , while it has similar complexity with the remaining three al-

gorithms. Note though that, as it will be also shown in the next

section, PETRELS and GROUSE perform well under the condition

that the true subspace rank r ( n ) is known, while Algorithm 2 of

Mardani et al. [17] , being a first-order algorithm is expected to

have a much slower convergence rate compared to the remaining

second-order schemes included in Table 2 .With regard to mem-

ory requirements, OVBSL demands more storage space compared

to the rest state-of-the art algorithms, yet at the same order of

magnitude with PETRELS and Algorithm 1 of Mardani et al. [17] .

As expected, lower memory storage is required by the first order

methods namely GROUSE and Algorithm 2 of Mardani et al. [17] . 

7. Experimental results 

In this section, the effectiveness of the proposed algorithm is

corroborated in a variety of experiments carried out on synthetic

and real data. 

7.1. Synthetic data experiments 

In the following, two different experiments are presented. Our

first goal is to illustrate the efficiency of OVBSL in tackling ma-

trix completion. It should be noted that the sparsity imposition on

the subspace matrix from OVBSL is purposely relaxed in this ex-

periment, that is we set �l = I K , ∀ l = 1 , 2 , . . . , L . The performance

of OVBSL in the challenging sparse subspace estimation problem is

explored in the second experiment of this subsection. Therein, the

aforementioned favorable characteristic of OVBSL algorithm, i.e., its

potential to impose sparsity on the subspace matrix, is thoroughly

investigated. To this end, the parameters γ kl ’s are then considered

“active”, normally taking their values according to the full Bayesian

model analytically described above. 

7.1.1. Online matrix completion 

In order to assess the performance of OVBSL algorithm in re-

covering missing data, we simulate a low dimensional subspace

U ∈ R 

K×r with K = 500 and r = 5 and Gaussian i.i.d entries u kl ∼
N (0 , 1 

K ) . Next, 20 0 0 0 r × 1 projection coefficient vectors c ( n ) are

produced according to a Gaussian distribution c l (n ) ∼ N (0 , 1) . The

signal y ( n ) at time n is then generated by the product Uc ( n ), it is

normalized so that its power is equal to 1, and then contaminated

by i.i.d Gaussian noise e (n ) ∼ N (0 , β−1 I K ) . To model the missing

entries, we randomly select a fraction π of the entries from each

datum y ( n ), which are assumed to be known, whereas the rest

(1 − π) × 100 % of the elements are considered to be missing. To
how the merits of the proposed OVBSL algorithm, we compare it

o three state-of-the-art techniques, namely GROUSE with greedy

tep-size, [15] , PETRELS [4] and Algorithm 1 of Mardani et al. [17] .

t is worthy to mention that, as also previously mentioned, both

ROUSE and PETRELS hinge on the assumption that the rank of the

nderlying subspace is known. Contrary, Algorithm 1 of Mardani

t al. [17] utilizes � 2 -norm regularization as described in the pre-

ious section, that robustifies the algorithm in the absence of this

nowledge. Finally, the true standard deviation of the noise is pro-

ided as input for adaptively estimating the step-size of GROUSE

hile the low-rank regularization parameter of Algorithm 1 of

ardani et al. [17] is set to 0.1 as is proposed in the relevant paper.

In the sequel, to make things more interesting, we adhere to

he challenging but realistic scenario whereby the true rank of the

nderlying subspace is unknown. Along this line, the rank of the

ubspace matrix is accordingly initialized in all tested algorithms

o an overestimate of the true rank, namely L = 10 . Our initial ob-

ective is to demonstrate the effectiveness of the proposed OVBSL

lgorithm when certain amounts of data are missing. To this end,

e carry out two experiments corresponding to different fractions

f the observed entries i.e. π = { 0 . 25 , 0 . 75 } , keeping the noise pre-

ision β fixed to 10 3 . Since the competence of the subspace learn-

ng algorithms in tracking possible changes of the sought subspace

s of crucial importance in many applications, an abrupt change

f the subspace is induced at n = 10 0 0 0 for π = 0 . 25 . The per-

ormance of the tested algorithms is evaluated in terms of the

ormalized running average estimation error (NRAEE) defined as:

RAEE (n ) = 

1 
100 

∑ n 
i = n −99 

‖ ̂ y (i ) −y (i ) ‖ 2 ‖ y (i ) ‖ 2 where ˆ y (i ) = 

ˆ W (i ) ̂ x (i ) . The av-

rage NRAEE of 10 independent runs of the experiment is shown

n Fig. 2 a. It is clear that the proposed OVBSL algorithm outper-

orms its rivals for both values of the fraction of the observed data

. At the same time, OVBSL is proven to be competent in tracking

udden changes of the latent subspace, since the transient deterio-

ation of its performance caused by the deliberate change induced

t n = 10 0 0 0 is swiftly rectified in the subsequent iterations. No-

ably, in the lack of knowledge of the true rank of the subspace,

ETRELS becomes unstable. Contrary, Algorithm 1 of Mardani et al.

17] and GROUSE with the greedy step-size scheme present a ro-

ust behavior (note that GROUSE is given the true standard devi-

tion of the noise for updating its step-size), though with clearly

ess reconstruction accuracy compared to the proposed OVBSL al-

orithm. 

Next, we examine the robustness of OVBSL to noise corrup-

ion. To do so, we keep the fraction of the observed entries fixed

o π = 0 . 4 , focusing on the behavior of OVBSL and the compet-

ng schemes for three different values of the noise precision i.e.

= { 10 5 , 10 3 , 10 2 } . Fig. 2 b depicts the average NRAEE of 10 execu-

ions of the experiment obtained by the tested algorithms in the

hree different cases examined. It is easily noticed that herein as

ell, OVBSL achieves higher reconstruction accuracy than the com-

eting schemes for all different β ’s, thus corroborating its strength

o various levels of noise corruption. 

.1.2. Online sparse subspace estimation 

In the following, the compelling feature of OVBSL to favor sparse

ubspace estimates is thoroughly explored. To clearly demonstrate

he merits of this key aspect of our algorithm, a sparse subspace
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Fig. 2. Performance comparison among OVBSL, Algorithm 1 of Mardani et al. [17] , PETRELS and GROUSE, [15] , for the matrix completion problem. (a) Robustness to different 

fractions of the observed entries ( π ) (b) Sensitivity to different levels of noise corruption. 

Fig. 3. Performance comparison between sparse and non-sparse versions of OVBSL and GROUSE, [15] . (a) Robustness to different sparsity levels of the subspace matrix and 

π = 1 (b) Robustness to different percentages of missing entries and subspace sparsity levels. 
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v  

e  

t  
atrix U of rank r = 5 is modeled. Then, the same above-described

rocess is adopted for producing 20 , 0 0 0 projection coefficient vec-

ors c ( n ), that give rise to the corresponding signals Uc ( n ). Finally,

aussian i.i.d noise of precision β = 10 3 is assumed to contaminate

he datums. For now, focusing on the subspace matrix estimation

roblem, we depart from the matrix completion problem consid-

ring that data are fully observed (hence the fraction of the ob-

erved entries π equals to 1) and we test two versions of OVBSL,

hat is, when sparsity of the subspace a) is taken into account and

) is disregarded in the same way explained earlier and the greedy

tep-size version of GROUSE, [15] . The estimates of the subspace

re assessed as time evolves by means of the normalized subspace

econstruction error (NSRE) defined as NSRE (n ) = 

‖P ˆ W 

⊥ (n ) 
U ‖ F 

‖ U ‖ F . 8 The

enefits emerging from taking into account the sparsity existing in

he unknown subspace matrix, come to light by exploring OVBSL’s

erformance for different levels of sparsity imposed on it, namely

.7 and 0.9. In both cases, the subspace matrices are initialized to

n overestimate of the rank, i.e., L = 10 . Fig. 3 a depicts the mean

SRE of 10 runs of the experiment obtained for the two versions

f OVBSL and GROUSE as time evolves. As it can be readily seen,

VBSL achieves subspace estimates of higher accuracy compared to

oth its so to speak non-sparse version and GROUSE which, like-

ise, does not favor sparsity on the subspace matrix. It should be
8 P ˆ W 

⊥ (n ) U denotes the projection of the true subspace matrix U to the orthogonal 

omplement of the subspace spanned by the columns of the estimated subspace 

atrix ˆ W 

⊥ (n ) . 

f  

w  

l  

h  

o

oted that the gains obtained by the sparse OVBSL are becoming

bundantly clear as the sparsity level increases. 

Next, OVBSL and GROUSE are probed in the challenging prob-

em of sparse subspace estimation from partially observed data.

owards this, the same experimental setting described above is

ollowed and two cases corresponding to two different combina-

ions of sparsity level and fraction of observed entries are exam-

ned, namely a) sparsity-level = 0.7 and π = 0 . 75 and b) sparsity-

evel = 0.9 and π = 0 . 5 . OVBSL is again evaluated for the two cases

orresponding to its sparse and non-sparse version and GROUSE is

lso tested, initializing the rank L of subspace matrices to 5 and

sing NSRE as the performance metric. From Fig. 3 b, it is verified

hat albeit data are incomplete, sparse OVBSL outperforms both its

on-sparse version and GROUSE thus corroborating that taking ad-

antage of the sparsity of the subspace matrix is still meaningful

hen the assumption of sparse subspace is valid. 

.2. Real data experiments 

In this part of the paper, the efficiency of OVBSL algorithm is in-

estigated on real data. More concretely, we conduct two different

xperiments corresponding a) to hyperspectral image reconstruc-

ion out of partially observed measurements and b) to the eigen-

ace learning problem. In both experiments OVBSL is compared

ith the state-of-the-art Algorithm 1 of Mardani et al. [17] whose

ow-rank regularization parameter takes its value according to the

euristic rule that was also followed on the real data experiments

f Mardani et al. [17] . 
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Fig. 4. Performance comparison between OVBSL and Algorithm 1 of Mardani et al. [17] in terms of NRAEE and SSIM. (a) NRAEE as the number of processed pixel increases 

(b) SSIM index per reconstructed band. 
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Fig. 5. Reconstruction of Salinas Valley HSI by OVBSL and Algorithm 1 of Mardani et al. [17] , for π = 0 . 2 . 
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(a) Algorithm 1 of [17]

(b) sparse OVBSL

Fig. 6. Eigenfaces obtained by Algorithm 1 of Mardani et al. [17] and OVBSL on MIT-CBCL dataset. 
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.2.1. Pixel-by-pixel hyperspectral image recovery 

A hyperspectral image (HSI) is a collection of multiple grayscale

mages captured at many contiguous spectral bands (channels),

hus forming a so-called spectral cube. As a result of this, each

ixel in a HSI is represented by a vector of size equal to the num-

er of spectral bands and is called pixel spectral signature . The en-

ries of this vector are the radiance values of the spatial area corre-

ponding to the pixel in all spectral channels. A key characteristic

f HSIs is the high degree of correlation they present, both in the

pectral and the spatial domains, [34] . Given a HSI, let us form a

atrix with its rows corresponding to the pixels of the HSI, and

ts columns to the spectral bands. In doing so, it can be easily seen

hat the underlying high coherence appearing both in columns and

ows leads to a matrix that may be of very low rank, as compared

o its dimensions. Actually, this fact gives us good grounds for ex-

loiting the low-rank structure in favor of recovering HSIs, in cases

hat data either are partly missing or have suffered by severe noise

orruption. In the following, we test the performance of OVBSL and

lgorithm 1 of Mardani et al. [17] in recovering the Salinas Valley

SI, [34] , out of a fraction π = 0 . 2 of its entries. Since both algo-

ithms process data in an online fashion, we assume that the afore-

entioned time instances, hereafter, correspond to a sequence of

ll the pixels taken in a random order from the image. Put differ-

ntly, the algorithms process the pixel spectral signatures (which

re the rows of the formed matrix) one-by-one, as if they were

ecoming available in a streaming fashion. Notably, this type of

rocessing aside from reducing the computational complexity, it

lleviates the need for memory storage, thus paving the way for

n-board processing. The rank of the subspace matrix is initialized

o L = 10 . To quantitatively assess the performance of the tested

lgorithms, we estimate the NRAEE ( Fig. 4 a), as the number of the

rocessed pixels increases, and the structural similarity (SSIM) in-

ex values, [35] , between the true and the reconstructed band im-

ges ( Fig. 4 b). It is clearly shown in Fig. 4 a that OVBSL achieves

igher reconstruction accuracy on average as compared to its ri-

al in terms of NRAEE. Focusing on Fig. 5 b, it can be noticed that

VBSL presents higher SSIMs in the majority of the spectral bands,

ith only few exceptions of bands, where the SSIM indexes ob-
ained by OVBSL and Algorithm 1 of [17] , either take close values

r the latter gets slightly greater values, e.g. at band 31. In order

o give a further insight at the reconstructed bands, we provide in

ig. 5 a and e, the true bands 31 and 37, respectively, accompanied

y their incomplete versions ( Fig. 5 b and f) that were provided as

nputs to the tested algorithms. From Fig. 5 c and d, it can be eas-

ly observed that, in good agreement with the SSIMs of the two

lgorithms at this band, OVBSL reconstructs the 37th band of Sali-

as HSI in remarkably higher accuracy than Algorithm 1 of [17] . As

egards band 31 where the SSIM index of Algorithm 1 of Mardani

t al. [17] is slightly higher than that of OVBSL, Fig. 5 g and h show

hat the reconstructed images are quite similar for both algorithms.

hat said, OVBSL is favorably proven to be competent in processing

his real HSI dataset, outperforming the state-of-the-art Algorithm

 of Mardani et al. [17] . 

.2.2. Online eigenface learning 

In this section, we qualitatively evaluate the performance of

parse OVBSL as compared to the non-sparse Algorithm 1 of Mar-

ani et al. [17] on another real dataset. Towards this, we use the

IT-CBCL face dataset [36] , which contains n = 2429 face images

f size 19 × 19 pixels. The tested algorithms process the images as

 -dimensional vectors with K = 361(= 19 2 ) , in an online fashion.

he subspace matrix estimated by both algorithms can be deemed

s a learned dictionary of faces. In doing so, each image can be re-

onstructed by a linear combination of the atoms (eigenfaces) con-

ained in the subspace matrix. The rank of the subspace is initial-

zed for both algorithms to 50. Fig. 6 shows the 21 more charac-

eristic eigenfaces. Dark pixels correspond to negative values, while

ositive values are denoted with light colors. As it can be noticed,

parsity imposition from the sparse OVBSL leads to eigenfaces that

resent more localized features, contrary to those obtained by Al-

orithm 1 of Mardani et al. [17] , where features are spread out

ver the image. It should be also noted that OVBSL converged to

 subspace matrix of low-rank. This fact resulted from the inher-

nt advantageous characteristic of OVBSL to eliminate components

resenting low variance, hence offering negligible information. 
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8. Conclusions 

In this paper, a novel online variational Bayes subspace learn-

ing (OVBSL) algorithm from incomplete data was presented. Two

basic merits of the proposed approach are: a) the imposition of

low-rankness on the sought subspace by utilizing a novel group

sparsity based heuristic, and b) the sparsity promotion on the sub-

space matrix. The former characteristic makes the algorithm ro-

bust in the absence of the knowledge of the true rank while the

latter renders it amenable to sparse dictionary learning problems.

OVBSL belongs to the family of Bayesian algorithms thus, contrary

to its deterministic counterparts, no parameter fine-tuning is re-

quired. The effectiveness of the proposed algorithm is verified in

a variety of experiments conducted on simulated and real data.

Subspace tracking from partial observations, treated in this paper,

can be also viewed as an online matrix completion task that has a

major impact in numerous applications. By suitably extending and

modifying the proposed Bayesian model and methodology, similar

problems of high importance such as online nonnegative matrix

factorization and online robust PCA can be potentially tackled. This

extension as well as the unification of all the different schemes un-

der a common umbrella is the subject of our current investigation.

Appendix A 

Due to the conjugacy of the respective prior distributions (14),

(15) and the likelihood (12) , the posterior distribution q ( x ( i )) of the

i th coefficient vector does turn out to be Gaussian, i.e. 

q (x (i )) = N 

(
x (i ) | 〈 x (i ) 〉 , �x (i ) 

)
, (A.1)

with mean 〈 x ( i ) 〉 and covariance matrix �x ( i ) given by, 

〈 x (i ) 〉 = 〈 β〉 �x (i ) 〈 W 〉 T z (i ) , (A.2)

�x (i ) = 〈 β〉 −1 
(〈 W 

T �i W 〉 + 〈 S 〉 )−1 
, (A.3)

where we recall that �i = diag (φ(i )) . The expectation term

〈 W 

T �i W 〉 is expressed as, 

〈 W 

T �i W 〉 = 〈 W 〉 T �i 〈 W 〉 + 

K ∑ 

k =1 

φik �w k 
(A.4)

where �w k 
= diag ([ σ 2 

w k 1 
, σ 2 

w k 2 
, . . . , σ 2 

w kL 
] T ) by virtue of the statisti-

cal independence assumed for the elements of W . Note that σ 2 
w kl 

is

the variance of w kl whose posterior turns out also to be Gaussian,

i.e. 

q (w kl ) = N (w kl | 〈 w kl 〉 , σ 2 
w kl 

) , (A.5)

with 

〈 w kl 〉 = 〈 β〉 σ 2 
w kl 

(〈 x l 〉 T �z k − 〈 x T l �Φk X ¬ l 〉〈 w k ¬ l 〉 
)
, (A.6)

σ 2 
w kl 

= 〈 β〉 −1 
(〈 x T l �Φk x l 〉 + 〈 γkl 〉〈 s l 〉 

)−1 
. (A.7)

X ¬l and w k ¬l in (A.6) are the quantities arising after removing the

l th column and the l th element of X and w k , respectively and Φk =
diag (ϕ k ) . As for the expectation terms appearing in (A.6) and (A.7) ,

it holds, 

〈 x T l ��k X ¬ l 〉 = 〈 x l 〉 T ��k 〈 X ¬ l 〉 + 

n ∑ 

i =1 

λn −i φik σ
T 
x ( i ) ¬ l , (A.8)

〈 x T l �Φk x l 〉 = 〈 x l 〉 T �Φk 〈 x l 〉 + 

n ∑ 

i =1 

λn −i φik σx il , (A.9)

with σx ( i ) ¬l standing for the l th column of �x ( i ) after removing its

l th element σx il 
. 
Next, the posterior distributions of the variables s l ’s and γ kl ’s

elonging to the second hierarchical level are unfolded. From

24) it can be shown that the column sparsity promoting parame-

ers s l ’s are a posteriori distributed according to the following gen-

ralized inverse Gaussian distribution, 

 (s l ) = GIG 
(

s l | −1 

2 

, 〈 β〉 (〈 w 

T 
l �l w l 〉 + 〈 x T l �x l 〉 

)
, 〈 δl 〉 

)
. (A.10)

or the mean 〈 s l 〉 of the GIG distribution it holds, 

 s l 〉 = 

√ 

〈 δl 〉 
〈 β〉 (〈 w 

T 
l 
�l w l 〉 + 〈 x T 

l 
�x l 〉 

) . (A.11)

ikewise, the posterior distribution of γ kl ’s that promote indepen-

ently sparsity on the elements of the subspace matrix W is the

eneralized inverse Gaussian 

 (γkl ) = GIG 
(
γkl | −1 

2 

, 〈 β〉〈 s l 〉〈 w 

2 
kl 〉 , 〈 ρkl 〉 

)
, (A.12)

ith 〈 w 

2 
kl 
〉 = 〈 w kl 〉 2 + σ 2 

w kl 
. Hence, 

 γkl 〉 = 

√ 〈 ρkl 〉 
〈 β〉〈 s l 〉 (〈 w kl 〉 2 + σ 2 

w kl 
) 
. (A.13)

As far as the hyperparameters δl and ρkl of s l and γ kl respec-

ively, are concerned, both are a posteriori Gamma distributed i.e., 

 (δl ) = G ( δl | μ̄, ν̄l ) (A.14)

ith μ̄ = μ + 

n + K+1 
2 and ν̄l = ν + 

1 
2 〈 1 s l 

〉 , and 

 (ρkl ) = G 
(
ρkl | ψ̄ , ξ̄kl 

)
(A.15)

ith ψ̄ = ψ + 1 and ξ̄kl = ξ + 

1 
2 〈 1 

γkl 
〉 . For the expected values of δl 

nd ρkl , that is 〈 δl 〉 and 〈 ρkl 〉 we have, 

 δl 〉 = 

μ + 

n + K+1 
2 

ν + 

1 
2 
〈 1 

s l 
〉 , (A.16)

 ρkl 〉 = 

ψ + 1 

ξ + 

1 
2 
〈 1 

γkl 
〉 . (A.17)

sing the form of the distributions in (A.10) and (A.12) , the ex-

ectation terms 〈 1 s l 
〉 and 〈 1 

γkl 
〉 arising in (A.16) and (A.17) can be

btained as, 
 

1 

s l 

〉 
= 

1 

〈 s l 〉 + 

1 

〈 δl 〉 (A.18)

1 

γkl 

〉
= 

1 

〈 γkl 〉 + 

1 

〈 ρkl 〉 (A.19)

oncluding the posterior distributions of all the involved variables

n our hierarchical model, it can be shown that the noise precision

is Gamma distributed as follows, 

 (β) = G 
(
β | κ̄ , θ̄

)
(A.20)

here κ̄ = κ + 

n ( K+ L ) + KL 
2 

¯ = θ + 

K ∑ 

k =1 

(
〈‖ �

1 
2 

(
z k − Φk Xw k 

)‖ 

2 
2 〉 + 〈 w 

T 
k S Γk w k 〉 

)

+ 

L ∑ 

l=1 

〈 s l 〉〈 x T l �x l 〉 . (A.21)

nd Γk = diag ([ γk 1 , γk 2 , . . . , γkL ] 
T ) . The expectation of β is given by

 β〉 = 

κ̄
¯
. As for the expectation terms arising in (A.21) , it holds, 
θ
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‖ �
1 
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(
z k − Φk Xw k 

)‖ 

2 
2 〉 

= ‖ �
1 
2 

(
z k − Φk 〈 X 〉〈 w k 〉 

)‖ 

2 
2 + Tr 

(〈 X 〉 T �Φk 〈 X 〉 �w k 

)
+ 〈 w k 〉 T 

n ∑ 

i =1 

φik λ
n −i �x (i ) 〈 w k 〉 + Tr 

( 

�w k 

n ∑ 

i =1 

φik λ
n −i �x (i ) 

) 

(A.22) 

 w 

T 
k S�l w k 〉 = 〈 w k 〉 T 〈 S 〉〈 �l 〉〈 w k 〉 + 

L ∑ 

l=1 

〈 s l 〉〈 γkl 〉 σ 2 
w kl 

(A.23) 

ppendix B 

The joint prior of X and W is expressed as 

p(X , W | δ, β, �) = 

L ∏ 

l=1 

p( x l , w l | δl , β, �l ) (B.1) 

here 

p( x l , w l | δl , β, �l ) = 

∫ ∞ 

0 

p( x l | s l , β) p( w l | s l , β, �l ) p(s l | δl ) ds l 

(B.2) 

sing (14), (15) and (17) in (B.2) yields 

p( x l , w l | δl , β, �l ) = 

∫ ∞ 

0 

(2 π) −
n + K 

2 β
n + K 

2 | ��l | 1 2 s 
− 3 

2 

l 

× exp 

(
−βs l 

2 

( ‖ 

x l ‖ 

2 
2 , �+ ‖ 

w l ‖ 

2 
2 , �l 

)− δl 

2 s l 

)
ds l ,

(B.3)

here ‖ x l ‖ 2 2 , � = x T 
l 
�x l and ‖ w l ‖ 2 2 , �l 

= w 

T 
l 
�l w l . Using in (B.3) the

xpression of the GIG distribution for s l with parameters a =
( ‖ x l ‖ 2 2 , � + ‖ w l ‖ 2 2 , �l 

) , b = δl and p = −1 / 2 , we easily get 

p( x l , w l | δl , β, �l ) = (2 π) −
n + K 

2 β
n + K 

2 | ��l | 1 2 2 K − 1 
2 

×
(
β

1 
2 δ

1 
2 

l 
( ‖ 

x l ‖ 

2 
2 , � + ‖ 

w l ‖ 

2 
2 , �l 

) 
1 
2 

)

×
( 

β( ‖ 

x l ‖ 

2 
2 , � + ‖ 

w l ‖ 

2 
2 , �l 

) 

δl 

) 

1 
4 

(B.4) 

y employing the identity, 

 − 1 
2 
(x ) = 

(
π

2 x 

) 1 
2 

exp (−x ) 

n (B.4) and after some straightforward calculations, we end up

ith the following expression for the joint distribution of x l and

 l , 

p( x l , w l | δl , β, �l ) = (2 π) −
n + K−1 

2 β
n + K 

2 | ��l | 1 2 δ
− 1 

2 

l 

× exp 

(
−β

1 
2 δ

1 
2 

l 
( ‖ 

x l ‖ 

2 
2 , �+ ‖ 

w l ‖ 

2 
2 , �l 

) 
1 
2 

)
. 

(B.5) 

hen, from (B.1) 

p(X , W | δ, β, �) = (2 π) −
(n + K−1) L 

2 β
(n + K) L 

2 | �| L 2 

( 

L ∏ 

l=1 

δ
1 
2 

l 
| �l | 1 2 

) 

× exp 

( 

−β
1 
2 

L ∑ 

l=1 

δ
1 
2 

l 
( ‖ 

x l ‖ 

2 
2 , � + ‖ 

w l ‖ 

2 
2 , �l 

) 
1 
2 

) 

(B.6) 
hich is a multi-parameter (with respect to the δl ’s) Lalpace-

ype distribution defined on the columns of the matrix

( �1/2 X ) T ( ��W ) T ] T . Such a distribution is known to impose

olumn sparsity and thus, due to the form of the matrix, joint

olumn sparsity on X and W . 
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