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Abstract

This paper presents an adaptive exponentially weighted algorithm for least-squares (LS) system identification. The
algorithm updates an inverse ‘square root’ factor of the input data correlation matrix, by applying numerically robust
orthogonal Householder transformations. The scheme avoids, almost entirely, costly square roots and divisions (present
in other numerically well-behaved adaptive LS schemes) and provides directly the estimates of the unknown system
coefficients. Furthermore, it offers enhanced parallelism, which leads to efficient implementations. A square array
architecture for implementing the new algorithm, which comprises simple operating blocks, is described. The numerically
robust behavior of the algorithm is demonstrated through simulations. The algorithm is compared to the recently
developed inverse factorization QR scheme (Alexander and Ghirnikar, 1993), in terms of computational complexity,
parallel potential and numerical properties.

Zusammenfassung

Ein adaptiver, exponentiell gewichteter Algorithmus zur Systemidentifikation auf der Basis kleinster Quadrate (least
squares. LS) wird vorgestellt. Er fithrt einen inversen “Quadratwurzel”-Faktor der Eingangsdaten-Korrelationsmatrix
nach, indem er numerisch robuste orthogonale Householder-Transformationen anwendet. Das Verfahren vermeidet
nahezu vollkommen aufwendige Wurzel- und Divisionsschritte (wie sie in anderen numerisch gutmiitigen adaptiven
LS-Methoden auftreten) und liefert unmittelbar die Schitzwerte der unbekannten Systemkoeffizienten. Dariiber hinaus
bietet es einen verbesserten Parallelismus, der zu effizienten Realisierungen fiihrt. Es wird eine quadratische Array-
Architektur zur Realisierung des neuen Algorithmus beschrieben, welche einfache Funktionsblocke umfaBt. Das
numerisch robuste Verhalten des Algorithmus wird anhand von Simulationen demonstriert. Der Algorithmus wird mit
dem kiurzlich entwickelten inversen Faktorisierungs-QR-Schema (Alexander und Ghirnikar, 1993) im Hinblick auf
Rechenaufwand, Parallelitit und numerische Eigenschaften verglichen.

Résumée

Cet article présente un algorithme adaptatif avec pondération exponentielle pour l'identification de systémes au sens
des moindres carrés (LS). L'algorithme met & jour un facteur en ‘racine carrée’ inverse de la matrice de corrélation des
données d’entrée, en appliquant des transformations orthogonales de Houscholder numériquement robustes. La
meéthode évite presque entierement U'emploi de colteuses divisions et racines carrées (que I'on rencontre dans d’autres
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méthodes LS adaptatives et numériquement robustes) et fournit directement les estimées des coefficients du systéme
a identifier. De plus, il offre un parallélisme avancé menant a des implémentations efficaces. On décrit une architecture de
type matrice carrée comprenant de simples blocs opérateurs pour implémenter le nouvel algorithme. La robustesse
numérique de l'algorithme est mise en évidence par des simulations. L’algorithme est comparé a la méthode QR de
factorisation inverse développée récemment (Alexander et Ghirnikar, 1993), en terme de complexité de calcul, de potentiel

de parallélisme et de propriétés numériques.

Keywords: Inverse factorization algorithms; Orthogonal Householder transformations; Parallel algorithms; Numerical

stability

1. Introduction

Adaptive least-squares algorithms for system
identification [9, 10] are popular due to their fast
converging properties and are used in a variety of
applications, such as channel equalization, echo
cancelation, spectral analysis, control, to name but
a few. Among the various efficiency issues charac-
terizing the performance of an algorithm, those of
parallelism and numerical robustness are of par-
ticular importance, especially in applications where
medium to long filter lengths are required. Some-
times it may be preferable to use an algorithm of
higher computational complexity, but with good
numerical error properties and high parallelism,
since this may allow its implementation with
shorter word lengths and fixed point arithmetic on
an array architecture. This has led to the develop-
ment of a class of adaptive algorithms based on the
QR factorization of the input data matrix.

Three methods can be used for the QR decompo-
sition (QRD) of the input data matrix, namely the
Givens method, the modified Gram-Schmidt and
the Householder methods [8]. All three of them are
known to be numerically robust, although several
authors have claimed the superiority of the House-
holder method in limiting the accumulation of
round-off errors [20, 15, 27]. Recursive QRD
algorithms that are based on the modified
Gram-Schmidt and the Givens approach have al-
ready been developed [6, 16, 13]. These algorithms
are of O(p?) complexity per time iteration, with
p being the order of the system. They are ‘square-
root’ schemes, which update the Cholesky factor of
the input data correlation matrix, and can be effi-
ciently implemented on triangular systolic arrays.
Furthermore, these schemes can provide the

modeling error directly without it being necessary
to compute explicitly the estimates of the transver-
sal parameters of the unknown FIR system. If,
however, these estimates are required, a highly ser-
ial backsubstitution step must be employed. This
step cannot be pipelined with the update step, thus
limiting the performance of the algorithm. Schemes
which overcome the backsubstitution step have
been suggested, but at the expense of realization
complexity [24, 26].

An alternative O(p?) RLS scheme was recently
introduced and it is based on the update of the
inverse Cholesky factor of the data correlation
matrix via the Givens rotations approach [1, 19].
This inverse QR scheme circumvents the back-
substitution problem and can provide directly
the unknown coefficient estimates. The algorithm
can also be implemented very efficiently on tri-
angular systolic arrays [7, 17]. Fast schemes
which compute the modeling error with O(p)
computational complexity, based on Givens rota-
tions, have also been derived for the above algo-
rithms [5, 12, 21, 22].

The use of Householder transformations in the
LS framework has so far been restricted in block
type problems [20, 25, 15]. This is a direct conse-
quence of the nature of a Householder matrix,
which is usually applied to annul block of elements
in vectors or matrices. Thus, Householder trans-
formations have been used either in simple block
LS updates (downdates) [20, 25] or in block RLS
schemes [ 15]. Simple 2 x 2 Householder reflections
have also appeared in place of Givens rotations in
the QRD-RLS problem [14].

This paper presents an O(p?) RLS algorithm
which springs from an inverse square root factor
of the data correlation matrix and incorporates
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numerically robust block orthogonal' House-
holder transformations. The algorithm updates
a square factor, instead of a triangular one, and
computes the filter parameters directly, without
involving matrix inversions or backsubstitution
steps. The proposed scheme avoids almost entirely
divisions and square roots (present in algorithms
based on Givens rotations) and employs low-cost
additions and multiplications. Furthermore, it ex-
hibits high degree of parallelism, which makes it
amenable to efficient implementation. An array
architecture which efficiently implements the new
scheme is described. This architecture is designed to
take full advantage of the algorithm’s parallelism,
and it comprises very simple operating blocks. We
must state that the derived algorithm consists of
matrix—vector and vector-vector operations,
which make it suitable for efficient implementations
on vector processors.

The paper is organized as follows. The QR de-
composition approach to the RLS problem via
Givens rotations is described in Section 2. Both the
QR and the inverse QR algorithms are discussed.
Orthogonal Householder transformations are then
briefly reviewed and a Householder RLS (HRLS)
algorithm is developed in Section 3. Section 4 dis-
cusses parallel implications of the scheme derived
and proposes a square array for its efficient imple-
mentation. The performance of the algorithm is
illustrated with simulations in Section 5 while Sec-
tion 6 concludes this work. For clarity of presenta-
tion real signals are considered throughout the
paper. We mostly adopt the notation that appears
in [10].

2. QR decomposition and the RLS problem

Fig. 1 illustrates the typical system identification
task, which is our main concern in this paper.
Given an unknown FIR system, excited by an input
signal u(n), we seek the estimates of the p unknown
tap coefficients so that the error ¢(N) between the

'According to [8. p. 70], a matrix Q € R™*™ is said to be
orthogonal when Q"Q = I. That is, the columns of Q form an
orthonormal basis for R™.
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measured output of the system y(N) and the output
of an associated model y(N) is minimum in the
least-squares sense. That is, the sum

N
le(N)I2 =3 AV""[y(n) — c"(N)u(n)]? (1
n=1
1s minimum, where 4 is the usual forgetting factor
with 0« A« 1, and

eT(N) = [e(1),&(2), ..., e(N)],
cT(N) = [(,I(N)scl(N)a ﬁ(.p(N)] »
u'(n) = [u(n),u(n — 1), ... ,.u(n — p + 1)].

The quantity #n(n) in the figure stands for the
measurement noise. It is well known that the LS
solution ¢(N) is obtained from the equation

R(N)e(N) = p(N), (2)

where the upper triangular matrix R(N) stands for
the Cholesky factor of the input data correlation
matrix and p(N) corresponds to the rotated refer-
ence vector [10]. In most real time applications
a recursive least-squares algorithm is required, in
which the solution of the least-squares problem at
time N is obtained from the solution of the previous
time instant. Indeed, it has been shown that [10]

. JU2RIN — 1] [R(N)
oo [RE ][R

Q(N ) results from a sequence of basic Givens rota-
tions which successively annihilate the elements of
u"(N) against 2V2R(N — 1). At the same time it is
most interesting that [21, p. 882]

A A2p(N = 1)]  [p(N)

Q(N)[ V) ]—[WJ, (4)
where

é(N) = sgn(e(N))/e(N)e(N); (5)

¢(N) is the a priori error expressed as
e(N) = y(N) — ¢"(N — Du(N). (6)

After updating R(N = 1) and p(N — 1) from (3) and
(4), the coefficients’ vector ¢(N) can be computed
from (2) with backsubstitution. This highly serial
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Fig. 1. System identification problem.

backsubstitution step has always been a drawback
in the performance of the QRD-RLS algorithm,
especially when the algorithm is implemented on an
upper triangular systolic architecture [1]. One way
to overcome this problem is to update R~ ! instead
of R. It can be shown that the same rotations used
to update R can also be applied for updating R~ T
[18, 19],

N JTVRRTTIN = 1)) [RTT(N)
Q(N)[ o ]— [ WI(N) ] (7

w(N) is a scaled version of the Kalman gain vector.
Indeed, if we multiply the transpose of the matrix
on the left-hand side (LHS) of (3) with the matrix on
the LHS of (7) the identity matrix results, The
update of R~ in (7) is easily verified since the same
must hold for the matrices in the right-hand side of
the corresponding expressions. If now
5T
g(N):R (N /Tl)u(N)’ ®)
\/ A

then the rotation parameters of Q(N) required in (7)
can be obtained by successively annulling the first
p elements of the vector [ —g"(N),1]T as follows:

A —g(N)| | 0
oo ][9]

Since Q(N) is orthogonal the last equation implies
that

MN) = /1 +g"(N)g(N). (10)

The backsubstitution step can now be circum-
vented if we adopt the following formula for the
update of the coefficients vector ¢(N) [19]:

e(N)

c(N)=c¢(N—-1) —w(N)(S(N).

(11)

Finally, we must note that if we express Q(N) in
block form (see also below), then from (3), (7) and
the orthogonality of Q(N), w(N) can be written as

R™YN — 1)g(N)

N)= —
W) J7O(N)

. (12)

2.1. The structure of Q(N)

Some aspects of the structure of Q(N) will be
useful in the analysis to follow. Let us rewrite Q(N)
in the block form

A [Z(N) q(N)]

0N =| r(n) aN) (13)
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where Z(N) is the upper left p x p part of Q(N). If
we substitute Eq. (13) in (3) and (7) and take into

consideration the fact that Q(N) is orthogonal, the
blocks of Q(N) can easily be expressed as (see also

[10])

I(N)Y=12R-T(N)RY(N — 1), (14)
__&iN)

6(N)= o)’ (135)

g(N) =R T(N)u(N), (16)

a@(N)=1/3(N). (17)

In the following sections we develop a ‘square root’
algorithm that solves the RLS problem. The algo-
rithm updates and applies a square factor, in
contrast to already known schemes [6, 1] which
update triangular factors. This fact necessitates the
use of numerically robust orthogonal Householder
transformations. The proposed scheme computes
the filter taps directly and avoids almost entirely
divisions and square roots. It includes two divisions
and one square root, in other words the number of
these costly operations is independent of p, the
system’s order. Moreover, it offers enhanced paral-
lelism, which makes it amenable to efficient imple-
mentation on an array architecture or a vector
processor machine.

3. Derivation of the Householder RLS (HRLS)
algorithm

We begin this section with a brief review of the
definition and main properties of orthogonal
Householder matrices. We then proceed with the
derivation of the HRLS algorithm.

3.1. Orthogonal Householder transformations

An orthogonal Householder matrix has the fol-
lowing special form [8, 25]:

veT
P=1-2—. (18)

vTe

It is obvious from (18) that matrix P is also symme-
tric. Householder transformations are often used to
annul block of elements in matrices or vectors by
appropriately selecting the Householder vector v in
(18). More specifically, if x is a nonzero vector and
e; stands for the unit vector with 1 in the ith posi-
tion, then it can be shown [8] that when

v=x=+ [x|e;, (19)
then
Px =T |x|le;. (20)

Note the sign difference in Eqgs. (19) and (20). It is
worth emphasizing that vectors v and x are identi-
cal except for the ith element. In most cases, explicit
formation of the Householder matrix from (18) is
not required. Instead, we usually aim to take ad-
vantage of the matrice’s special structure, which is
also the case in our analysis.

3.2. The HRLS algorithm

Let us define the square matrix A(N) as the
matrix product

A(N) = T(N)R(N), 21)

where T(N) corresponds to an orthogonal pxp
matrix for every N. The specific recursive expres-
sion of T(N) will be derived as we proceed. 1t is
recognized from (21) that A(N) represents a square
root factor (not triangular) of the input data cor-
relation matrix. Indeed,

RT(N)R(N)= AT(N)A(N). (22)

Due to the orthogonality of T(N), matrices A(N)
and R(N) have the same condition number. There-
fore, the dynamic range of the RLS problem does
not change if we update and use A (4~ ") instead of
R (R™™). More specifically, in the new scheme the
update of 47T is carried out by applying ortho-
gonal Householder transformations. We begin by
defining the vector

AN — Du(N)

k(N) = = T(N — )g(N). (23)

I
NV
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Obviously, vectors k(N) and g(N) have identical
Euclidean norms, which implies that

S(N) = 1+ g"(N)g(N) = /1 + K" (N)k(N).
(24)

Let us now assume that P(N)isa (p+ 1) x(p + 1)
orthogonal Householder matrix which when oper-
ates on [A(N), 117 makes its first p elements vanish,
ie.

kNY] [ o
P(N)[ | }~[—6(N)]' (25)

We will prove that P(N) also satisfies the equation

247N < A TN
P(N) [’ 0T( )} - [ wT(EV))] (26)

In other words, it will be shown that P(N) not only
updates 4~ T(N — 1), but also produces the gain
vector w(N), which is needed in the calculation of
the new filter coefficients. From the definition of the
Householder matrix we see that, in order for P(N)
to satisfy (25), it must be of the form

PIN) =1 —2 v(N)eT(N)

STy -

where the Householder vector v(N) is given by

o[k
¢(N) = [1 N (5(NJ. (28)

The selection of the positive sign in the last element
of v(N) aims to prevent from numerical problems,
which can arise by division with a very small num-
ber in (27). If we now set

B(N) (29)

_ 2
T o"(N)u(N)’
then combination of (24) and (28) easily results in

1

Furthermore, (27) is rewritten as
P(N)=1— B(N)v(N)eT(N). (31}

Let us now return to (26) and compute the effect of
the application of P(N). We have

C(N)

1ATTN = 1)) [AT2ATTN —
=P(N)[’ - )}[A o )]

kN) | oo 727247 T (N —1)
—/f(N)[1 +5(N)]v (N)[ o7 }

From (12), (21), (23) and (28) we obtain

124N —
CN) :[/ OT( )]

k(N) T
+ 5(N)[1 +(S(N)]w (N)O(N).

From (30) it is obvious that the last row of the
resulting matrix equals w'(N). In order to complete
our derivation we must show that the upper pxp
block of the matrix, say X(N), has the form
T(N)R T(N), where T(N)is an orthogonal matrix.
Indeed from (12) X(N) is written as

X(Ny=/,""24"T(N — 1)
— JTV2B(NY(N)g"(N)RT(N — 1),
and from (21) and (23)
X(N)=T(N — 1)[I — B(N)g(N)g"(N)Ji '
xRN — 1)
= T(N — D[I ~ B(N)g(N)g"(N)}2~""
x R-"(N — hH)RT(N)R"T(N),
and from (14)
X(N)=T(N — )[I — B(N)g(N)g"(N)]

x ETYN)RT(N).

Proposition. The p x p matrix
T(N)=[I - B(N)g(N)g"(N)]Z '(N) (32)

is orthogonal.
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Proof. 1t suffices to show that TT(N)T(N) = I. We
have

TT(N)T(N)
= X T(N)[I — B(N)g(N)g"(N)]*Z7'(N)
= X T(N)[I — 2B(N)g(N)g"(N)
+ BAN)Ig(N) [ 2g(N)g"(N)]E™H(N).

From Egs. (24) and (30), the last equation can be
simplified as follows:

Tver
TUN)T(N) = Z_T(N)|:1 _ g(N)g'IN)

(33)

Eqgs. (13) and (15) and the orthogonality of Q(N)
imply that

IUN)E(N)+ a(N)aT(N) =1

v _,_&(N)g'(N)
< Iz =1 -G

(34)
The completion of the proof is now straightforward
by substitution of (34) in (33). O

The validity of Eq. (26) is clear from the above
derivation. Furthermore, the orthogonal matrix
T(N) is expressed according to the recursive rela-
tion

T(N)=T(N—=1)T(N). TO)=1. (35)

It is really interesting that matrix P(N) also up-
dates A(N — 1) as well as an orthogonal trans-
formed version of vector p(N — 1). This is proved in
Appendix A, where expressions equivalent to (3)
and (4) are derived.

The main steps of the HRLS algorithm are illus-
trated in Fig. 2. The figure depicts the generation of
the Householder matrix P(N) and the resulting
recursion for A~T and w. As it was mentioned
earlier, matrix P(N) need not be computed explicit-
ly. In such a case the HRLS algorithm is imple-
mented as shown in Fig. 3. The soft-constrained
approach [10] is adopted for the algorithm’s initia-
lization. Note that the filter taps are directly
computed without the use of matrix inversions or

o k(N)=A"1Y24A"T(N - Du(N)

k(N) 0
e P(N) =
1 —§(N)
ATV2A-T(N — 1) A"T(N)
o P(N) =
o7 wT(N)

o e(N)=y(N)-cT(N - Lju(N)

s c(N)=c(N-1)- gi(%%w(zv)

Fig. 2. The main steps of the HRLS algorithm.

For N =1...do,

1. k(N) = A"124-T(N - 1)u(N);

2. §(N) = /1 + kT(N)k(N);

4. W(N)= A"Y(N = 1)k(N) (= —VA§(N)W(N));

CW(N) = AT2B(NYW(NY;

(1]

6. ATT(Ny= 2124 T(N - 1) - k(N)WI(N);
7. ¢(N) = y(N) — T (N = Du(N);
8. ¢(N)=c(N-1)+ T;E%)V"(N)?

Initialization (Soft-constrained)
c(0)=0. A T(0)= diag(l,),...,  P7}]

HAP

Fig. 3. The new HRLS algorithm.

backsubstitution steps. This is also a characteristic
of the inverse QR algorithm, which is based on
Givens rotations and is described in [1]. The com-
plexities of these two algorithms are shown in
Table 1. The complexity of the HRLS algorithm is
higher with respect to additions and slightly higher
with respect to multiplications. This was expected
since the new scheme manipulates a square matrix
instead of a triangular one which is the case in [1].
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Table 1
Comparison of complexities of inverse QR [1] and HRLS

Div.'s/
Algorithm Add.’s Mult.’s SQRT’s
Inverse QR 3ip* + O(p) ip* +O(p) 3p+1
HRLS 3p? + O(p) 4p* + O(p) 3

However. note that the HRLS algorithm avoids
almost exclusively divisions and square roots while
employing low-cost additions and multiplications,
in a multiply—add fashion, which is desirable for
efficient DSP implementations. On the other hand,
the inverse QR scheme requires O(p) divisions and
square roots. The numerical properties of the
HRLS algorithm are expected to be very favour-
able because of the use of numerical robust House-
holder reflections. Moreover, the derived scheme
offers enhanced parallelism, as compared to [1],
a notion which is further analyzed in the next
section.

It is well known that the exponentially weighted
QR and inverse QR algorithms are directly related
to the square root information and covariance fil-
ters. The latter appear in the Kalman filtering and
the unweighted linear LS estimation literature
[18,11,2,4,3]. It turns out that the HRLS algo-
rithm 1s, in the same way, related to the Potter’s
square root covariance scheme that was developed
in the early 1960s [3]. Indeed, the QR, inverse QR
and HRLS algorithms can also arise by adopting
the equivalence relation between Kalman and RLS
schemes as was recently presented in [23].

In our analysis, however, a different approach is
followed. More specifically, the procedure we de-
velop establishes and highlights the connection be-
tween the HRLS and the inverse QR schemes (both
being covariance square root algorithms). In this
way, insight can be gained concerning the internal
quantities which appear in these two algorithms.
Furthermore, this approach reveals the existence of
the numerically robust orthogonal block House-
holder transformation that updates the algorithm
derived (correspondingly a sequence of orthogonal
Givens rotations is used in the inverse QR algo-
rithm). A direct conclusion from the above observa-

tions is that both the HRLS and the inverse QR
algorithms share two important properties as far as
their numerical behavior is concerned: (a) they are
square root type algorithms which results in re-
duced dynamic range of data and (b) they are both
based on orthogonal transformations a fact which
limits the accumulation of round-off errors. There-
fore, both algorithms are appropriate candidates
for numerically stable implementations.

4. Parallel potential of the algorithm

An array architecture for implementing the
HRLS algorithm is depicted in Fig. 4 (for the case
p = 3). At time N, the square cells of the array store
and update the elements of matrix A~ (N — 1)
(step 6). They also perform the inner product com-
putations, required in the derivation of the vectors
k(N) (step 1) and w(N) (step 4). The cyclic cells,
at the bottom of the array, store and update the
filter taps (step 8) and produce the a priori error
¢(N) (step 7). The cyclic cells on the right of the
array compute 3*(N) and SB(N) (steps 2 and 3
of the algorithm). The emboldened cyclic cells
simply transform the gain w(N) in the form
+"12B(NYW(N), while the bottom right cell pro-
duces the quantity e(N)/(\/j,()‘Z(N)), which is re-
quired in the calculation of ¢(N). The functionality
of all the individual cells is shown in Fig. 4.

We must note that the elements of both vectors
k(N) and w(N) are generated in parallel. As is
illustrated in Fig. 4, the new input vector u(N) is
applied in parallel to the row cells of A~ "(N — 1)
allowing for the simultaneous calculation of
k{NY)s. This is accomplished by performing inner
product computations in a left-to-right procedure.
The thus computed vector k(N) concurrently ex-
cites the column cells of A~ T(N — 1) and is stored
there. Then the elements of w(N ) can be produced
simultaneously as inner products of k(N) with the
columns of A" (N — 1) in a top-to-bottom pro-
cedure.

It 1s worth stating that different steps of the
HRLS algorithm can be executed in parallel, thus
reducing the overall computation time. More
specifically:
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0 0 0
L I
u(N) u(N-1) u(N-2)
1 o, - -~
u®)_| | u(N-1)_| u(N-2)_|
o—> O 00,
- -
u(N) oD | u(N-2) !
I )|
o— O O,
B ol

u(N)

y(N) \Ci?/

a b
| b
c_- x=d+c oy
d o x y=a+b 0 2 D x=ar/b
& O3 =roy;-eb l
N .
a a
P x=rab b x=a+b?
y=a
v b *
2
x=c-be;
= ¢ +ad y=1/ (x+ x?)
vl x
Fig. 4. An array architecture that implements the HRLS algorithm (r = 27 '),
1. Having computed ¢(N — 1) in the previous time 2. The computation of w(N) and that of 3*(N) on
instant, vector k(N) can be calculated in parallel the right of the array can be simultaneously
with the a priori error e(N) at the bottom of the performed.

array. 3. All the elements of 4~ Y(N — 1) are simulta-
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neously updated according to the formula
Cl,‘j(N) =/, lllaij(]\r - 1) - k,(N}Wj(N)

This can be accomplished in parallel with the
update of the filter taps at the bottom of the
array.

4. The vector A~ " 2B(N)w(N) in the intermediate
cells and the quantity e(N)/’(N,/’//',éZ(N)) at the
bottom right cell can be calculated concurrently.
It is clear from the above discussion that the

computation time per time update iteration is that
required for the completion of 2p + 1 multiplica-
tions/additions (MADs) and 2 divisions/square
roots. Moreover, if we exploit the inherent pipelin-
ing of inner products, the above measure can be
reduced from (2p + 1) to (2log, p + 1) MAD:s. In
any case, a substantial improvement is offered with
respect to the algorithm of 1, 7] where the compu-
tation time per time update corresponds to 8p mul-
tiplications, 3p additions, 2p divisions and p square
roots. Thus, a considerable reduction in the
throughput rate is achieved. Moreover, the process-
ing units are of the simple multiply—add type. and
the number of divisions is independent of p. In
contrast, O(p) dividers are needed in [ 7], which is
usually not a desirable feature if VLSI implementa-
tion is considered.

Recently, an alternative systolic implementation
of the inverse QR algorithm has been proposed
[17]. In the new architecture, one processor is as-
signed to each 2 x2 block of neighboring matrix
elements by applying an odd—even partitioning
technique. Such an approach permits a fully
pipelineable implementation of the inverse QR al-
gorithm. This is achieved, however, at the expense
of a more complex structure with respect to arith-
metic building blocks and communication over-
heads.

The selection of an appropriate implementation
depends heavily on the applications’ requirements
and specifications. We must state, though, that the
algorithm, which 1s presented in this paper, is well
suited for implementation on a vector processor
machine. We observe from Fig. 3 that the HRLS
algorithm consists, almost entirely. of vector inner
and outer products, matrix—vector multiplications,
as well as other matrix and vector operations. All

these operations employ vectors and matrices of
constant dimension p. This is a direct consequence
of the use of Householder transformations and
makes a vector processor a suitable architecture for
the algorithm’s efficient implementation. This no-
tion does not seem to be a characteristic of RLS
algorithms which are based on Givens rotations,
because of the property of Givens rotations to
be more selective compared to Householder
reflections.

5. Simulations

In order to verify the correctness of the HRLS
algorithm a system identification problem is con-
sidered. The unknown FIR system is time invariant
of order 6, the SNR is 30 dB, the forgetting factor
/.=10.98 and the initialization parameter y = 0.01.
The input signal and the noise are chosen to be
Gaussian white noise processes. In Fig. 5 two initial
convergence curves are overlaid although they are
not distinguished. One corresponds to the HRLS
scheme and the other to the inverse QR algorithm
of [1]. The curves are the average of 100 realiz-
ations, in which the FIR model remains the same
but the input and noise signals are different. Note
that long-term simulations were run with no in-
dication of numerical stability problems for the
proposed algorithm. A theoretical study of the
stability properties of the algorithm is currently
under investigation,

The stable performance of the HRLS algorithm
1s demonstrated from another example. In this case
the order of the unknown time-invariant FIR sys-
tem is 8 while the input signal is given according to
the following linear combination of sinusoids [217]:

u(n) = cos (0.05mn) + \5 cos(0.3mn) + v(n),

where ©(n) is white Gaussian noise with variance
equal to 107'°. The remaining specifications are
the same with those of the first example. Note that
the 8 x 8 autocorrelation matrix of the above input
signal is nearly singular [21]. The squared errors
obtained after applying the HRLS and the conven-
tional RLS [9] algorithms are plotted in Fig. 6.
Notice that the HRLS scheme retains a stable
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behavior in contrast to the RLS algorithm that
diverges after about 1700 iterations.

6. Conclusions

An adaptive least-squares algorithm based on
Householder reflections was developed in this
paper. The new scheme employs low-cost additions
and multiplications and computes directly the un-
known coefficient estimates without the use of
backsubstitution. The algorithm’s enhanced paral-
lelism combined to its numerically stable behavior
can lead to efficient implementation of the new
scheme on parallel architectures with short word-
lengths and fixed-point arithmetic. The algorithm is
favorably compared to the recently developed in-
verse QR scheme (both being square root inverse
factorization schemes) in terms of computational
complexity, parallel properties and numerical be-
havior.
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Appendix A

We will prove that the Householder matrix P(N)
given in (31) satisfies the following equations:

APAN - 1] TAN)

P(N)[ —u'(N) J_[ or } .
AN — 1] [A(N)

P‘N)[ —WN) ]‘[é(N)]’ G7

where p(N) = T(N)p(N) for every N. Let us sup-
pose that

AM2AN — 1) Y(N)
P(N =
‘ ’[ —uT(V) } [,T(N) ’
where Y (N) corresponds to the upper p x p part of

the resulting matrix and ¢"(N) represents its last
row. Egs. (31) and (28) imply that

1'(N) = —u"(N) — B(N)(1 + 3(N))
x [2V%T(N)AN — 1) — (1 + 3(N))u"(N)]
1
_ _ T .
BT
x [A12g"(N)R(N = 1) — (1 + (N ))u™(N)]
= —u'(N)
_ T(N) — N T
5(1\/‘)[" (N)—=(1 +3(N)u'(N)]
=0".
Furthermore,

Y(N)=i"2AN — 1)

— BIN)K(N) [k (N)A(N — 1)

— (1 + 3(N)u"(N)]
= T(N —1)[2'"2R(N - 1)
+ B(N)S(N)g(N)u"(N)]JRH(N)R(N),

or from (8) and (14)
Y(N)=T(N — )[I + B(N)3(N)g(N)g"(N)]

x ZT(N)R(N).

If we now substitute ZT(N) from (34), then after
some manipulations we obtain

Y(N)=T(N — )[I — B(N)g(N)g"(N)]
x X YN)R(N)
= T(N — )T(N)R(N) = T(N)R(N)
= A(N),

which ensures the validity of (36).

Eq. (37) is proved by exploiting the relation be-
tween the orthogonal matrices O(N) and P(N).
Indeed, Eqs. (3), (7), (36), (26) and the uniqueness of
the QR decomposition (under the assumption that
R has positive diagonal elements) lead to the fol-
lowing expression:

s TNy o T(N-1) 0
Q(N’_[ 0" 1]P(N)[ 0" —1}‘

(38)

The correctness of (37) is now straightforward if we
substitute (38) in (4).
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