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Abstract—In this paper we propose a semi-supervised method
for hyperspectral image unmixing. Given a set of endmembers
present in the image, we assume that (a) each pixel is composed of
a subset of the available endmembers and (b) adjacent pixels are,
in all possibility, correlated. Then, we define an inverse problem,
where the abundance matrix to be estimated is assumed to be
simultaneously sparse and low-rank. These assumptions give rise
to a regularized linear regression problem, where a mixed penalty
is enforced, comprising the weighted `1 norm and an upper bound
of the nuclear matrix norm. The resulting optimization problem is
efficiently solved using a novel coordinate descend type unmixing
algorithm. The estimation performance of the proposed scheme
is illustrated in experiments conducted on both simulated and
real data.

I. INTRODUCTION

Spectral unmixing is, undoubtedly, one of the most promi-
nent and challenging problems in hyperspectral image process-
ing, [1]. Spectral unmixing is the process of indentifying (a) the
pure material spectra (called endmembers) that are present in
the scene, and (b) their corresponding fractional proportions in
each pixel (called abundances). The steps of this process are
commonly handled as two individual tasks in the unmixing
literature giving rise to endmember extraction and abundance
estimation techniques, respectively.

In this paper we assume that a set of endmembers is
given a priori and that the measured image pixel spectra
are linear combinations of these endmembers. We focus on
the inverse problem of abundance estimation, subject to the
physical constraint of nonnegativity. Besides nonnegativity,
recent novel ideas in the subject have put forth the exploitation
of sparse representations, and the spatial correlation in hyper-
spectral images. Sparsity with respect to a given endmembers’
dictionary has been explored in several works lately, e.g.,
[2]–[4]. Such a property is reasonable, since usually only
a few endmembers contribute to each pixel’s spectrum. As
a result, abundance vectors shall have only a few non-zero
entries. On the other hand, it has recently been shown that
the estimation performance of algorithms can be improved by
taking advantage of the spatial correlation that exists naturally
among pixels lying in homogeneous regions of hyperspectral
images. In this spirit, it is logically assumed that neighboring
pixels share the same support set and thus their corresponding
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abundance vectors form a matrix that possesses a joint-sparse
or low-rank structure, [5], [6].

Motivated by the above, in this work we present a new
unmixing algorithm that imposes concurrently the two afore-
mentioned constraints, i.e. sparsity and spatial correlation. To
this end, for the unmixing of each single pixel a square
window is employed that includes the pixel and its neighboring
ones. Hence, abundance estimation is expressed as a matrix
regression problem, with the corresponding abundance matrix
constrained to be simultaneously sparse and low-rank. These
two constraints are imposed by regularizing an initial least
squares cost function with a sparsity inducing weighted `1-
norm and an upper bound of the low-rank promoting trace
norm, [7], thus, giving rise to a sparse reduced-rank regression
scheme, [8]. Then, a low complexity alternating coordinate
descent type algorithm is developed, after splitting the original
nonconvex cost function into mutually dependent convex sub-
problems. The proposed algorithm is robust and converges
after a few iterations. Its performance is validated through
experiments on both synthetic and real data.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let Y = [y1,y2, . . . ,yK ] denote the L × K observation
matrix, consisting of the L-band spectral signatures of K =
κ×κ neighboring pixels enclosed in a sliding square window
of size κ. Assuming that the observations are produced via
a linear regression process i.e., Y is modelled via the linear
mixing model (LMM), we have

Y = ΦW + E. (1)

Matrix Φ = [φ1,φ2, . . . ,φN ] ∈ RL×N+ is the dictionary with
the spectra of N endmembers as its columns. The N × K
matrix W is composed of the abundance column vectors of
the K pixels contained in the window. Finally, E stands for
the additive stochastic noise matrix that corrupts the data, the
elements of which are assumed to be zero mean Gaussian
independent and identically distributed (i.i.d).

Regarding the abundance matrix W, two additional con-
straints are imposed, termed in hyperspectral jargon as non-
negativity and sum-to-one constraints i.e.,

W ≥ 0, and 1TW = 1T . (2)

where 1 is the all ones vector. In this paper, the controversial
sum-to-one constraint is purposely relaxed (see [9] for a
detailed explanation of this argument). Then given the pixels’
spectra matrix Y and the endmembers’ dictionary Φ, our
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objective is to estimate the non-negative abundance matrix W.
Hence, based on the above, spectral unmixing is formulated
as a constrained linear matrix regression problem.

Several methods recently proposed in the signal processing
literature, advocate for parameterizing further the unmixing
problem by adding more constraints on the abundance matrix
W. In this regard, sparsity constitutes a widespread hypothesis
effectively incorporated in numerous unmixing algorithms, e.g.
[4], [9]. This assumption implies that only a small subset of
the N endmembers contribute to the formation of the spectral
signature of each pixel. In addition, recently proposed window-
based unmixing algorithms e.g. [6], [10], have brought spatial
correlation into play that doubtlessly exists in homogeneous
regions of hyperspectral images. In that framework, spatial
correlation can enter the scene via the abundance matrice W,
by imposing joint-sparsity and/or low-rankness on its structure.

In the sequel, we depart from the usual paradigm by taking
simultaneously into account spatial correlation and sparsity.
More specifically, the unmixing problem is now formulated
as a sparse reduced-rank regression problem. This formulation
entails the pursuit of an abundance matrix W that a) fits well to
the data matrix Y with respect to a given dictionary Φ, b) has
low rank and c) has only a few nonzero, positive elements.
Accounting for all the above-mentioned requirements, W
derives as the solution of the following convex optimization
problem,

(P1) : Ŵ = argmin
W∈RN×K

+

1

2

{
‖Y −ΦW‖2F + λ∗‖W‖∗

+ λ1‖W‖1
}
,

where ‖ · ‖F stands for the Frobenius norm. In (P1), both
the nuclear (denoted as ‖ · ‖∗) and the `1 (‖ · ‖1) norms,
are utilized as convex surrogates of their nonconvex relevants
(namely rank and `0, [11]) for enforcing the low-rankness and
sparsity on W, respectively. Additionally, λ∗ and λ1 are the
reguralization parameters that control the importance of low-
rankness and sparsity of the related terms.

A common issue that arises in optimization problems that
involve rank minimization utilizing the nuclear norm, is the
high computational complexity. This is a consequence of the
fact that the computation of the nuclear norm requires a singu-
lar value decomposition (SVD) step, whose complexity when
applied on a matrix of size N ×K is O(N2K+NK2+K3).
This can be a serious impediment, especially in cases where the
handling of large scale data is needed. Herein, we follow an
alternative way for minimizing the rank of W. Specifically,
we adopt an explicit low-rank parameterization for W, [7],
which assumes that an upper bound r for the rank of W
(r ≥ rank(W)) is a priori available. According to this
parameterization, W is written as the product of two matrices
P ∈ RN×r and Q ∈ RK×r, i.e., W = PQT . The gain from
this parameterization is that now it holds,

‖W‖∗ ≤
1

2

(
‖P‖2F + Q‖2F

)
, (3)

that is, ‖W‖∗ is a tight lower bound of a sum of Frobenious
norms. Incorporating this parameterization to (P1), we end
up with the following optimization problem (P2), which is

approximate to (P1)

(P2) :
{

Ŵ, P̂, Q̂
}
= argmin

P,Q,W
L(P,Q,W), (4)

where,

L(P,Q,W) =
{1
2
‖Y −ΦPQT ‖2F +

λ∗
2

(
‖P‖2F + ‖Q‖2F

)
+ λ1‖W‖1 +

µ

2
‖W −PQT ‖2F

}
. (5)

In (5), the term ‖W−PQT ‖2F imposes the fitting between W
and its low-rank representation PQT , with µ being the weight-
ing parameter of this term. (P2) is a nonconvex optimization
problem with respect to matrices W,P and Q. Moreover,
the presence of the `1 norm induces a nonsmooth behaviour
of the objective function that must be suitably handled. In
the following, a novel algorithm is presented that solves (P2)
efficiently and provides an estimate of the abundance matrix
W.

III. THE PROPOSED ALGORITHM

To address the nonconvexity and nonsmoothness of (P2),
the minimization problem is split into three distinct subprob-
lems and an alternating coordinate descend type optimization
strategy is utilized. To be more specific, we define the follow-
ing

(P2a) : P̂ = argmin
P
L(P,Q,W),

(P2b) : Q̂ = argmin
Q
L(P,Q,W),

(P2c) : Ŵ = argmin
W
L(P,Q,W).

The above minimization problems are now convex and can be
solved independently, as explained below. In addition, it turns
out naturally that the solutions of these problems are mutually
dependent, thus giving us the possibility to define a cyclic
iterative scheme that provides a solution to the initial problem
(P2), after convergence.

A. Solution of (P2a)

Since L(P,Q,W) is differentiable with respect to P, P
can be obtained as the solution of the following equation

P̂ :
∂L(P,Q,W)

∂P
= 0. (6)

Calculating the derivative in (6) yields(
ΦTΦ + µIN

)
PQTQ + λ∗P =

(
ΦTY + µW

)
Q, (7)

where IN denotes identity matrix of size N . Setting A =

ΦTΦ+µIN , B = QTQ and C =
(
ΦTY + µW

)
Q, eq. (7)

is compactly written as

APB + λ∗P = C. (8)

Eq. (8) is a form of the Stein matrix equation, that has been
widely used in the field of control, [12]. To solve the Stein
equation (8), we adopt the robust algorithm proposed in [13].
In this algorithm, matrix A is reduced to its Hessenberg form
H = UAUT and matrix B is suitably replaced by its Schur
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representation S = VBVT , where U and V are orthogonal
matrices. It should be noted that since, in our problem, A and
B are symmetric, H and S turn out to be tri-diagonal and
diagonal matrices, respectively. If we now multiply both sides
of (8) from the left and the right by UT and V respectively,
and define X = UPVT , (8) is rewritten as:

HXS + λ∗X = F, (9)

where F = UTCV. Let us denote by xi, fi the ith columns
of X,F and by sii the ith diagonal element of S. Then, we
get from (9) the following system of equations

(siiH + λ∗IN )xi = fi, (10)

which due to the tri-diagonal form of H, can be solved for xi
with only O(N) operations, [14]. After estimating X, column
by column, matrix P is obtained by the inverse transform

P̂ = UTXV. (11)

B. Solution of (P2b)

Similarly to (P2a), the minimization problem (P2b) can be
solved as

Q̂ :
∂L(P,Q,W)

∂Q
= 0. (12)

Utilizing A,C defined above, (12) results to the closed form
expression

Q̂ = CTP
(
PTAP + λ∗Ir

)−1
. (13)

C. Solution of (P2c)

The optimization problem (P2c) is employed in order
to estimate matrix W. Considering P and Q as constants,
minimization of L(P,Q,W) with respect to W leads to

Ŵ = argmin
W
‖W‖1 +

µ

2λ1
‖W −PQT ‖2F (14)

which is the proximal operator of the `1 norm on PQT .
Writing (14) as

Ŵ = argmin
W

N∑
n=1

K∑
k=1

(
|wnk|+

µ

2λ1

(
wnk − pTnqk

))
, (15)

where pTn denotes the nth row of matrix P and qTk the kth row
of Q, Ŵ can be determined via elementwise soft-threshoding,
[15]. Thus,

ŵnk = SHRλ1/µ(p
T
nqk) (16)

where SHRλ(x) = sign(x)max(0, |x| − λ). In this paper, in
an attempt to enhance the imposition of sparsity, we use the
weighted version of the `1 norm thus matrix D is employed,
whose elements are given by

dnk =
1

|ŵnk|+ ε
. (17)

ŵnk in (17) is the estimate of wnk at the previous iteration of
the algorithm and ε is a very small constant. The solution of
(14) can be written in a more compact form as

Ŵ = SHRD(λ1/µ)(PQT ) (18)

The previous analysis summarizes to the new ALternating
Minimization Sparse Low-Rank Unmixing (ALMSpLRU) al-
gorithm shown in Algorithm 1, below. It should be noted
that the aforementioned nonnegativity constraint is imposed
by projecting W onto the nonnegative orthant of RN×K ,
denoted as RN×K+ (step 9). In Algorithm 1, the computational
complexity of each step is also included. We observe that
the most computationally demanding steps, are steps 4, 6 and
7 requiring O(N2r) operations per iteration. However, this
computational cost would be lower compared to that of a
SVD-based scheme, especially as the size κ =

√
K of the

square window increases. Moreover, as verified by extensive
simulations, the proposed algorithm is robust, and converges
in a small number of iterations.

Algorithm 1 ALMSpLRU

Inputs Y, Φ
Initialize parameters λ1, λ∗, µ
Initialize P,Q,W = PQT

Set A = ΦTΦ + µIN
Set [U,H] = hess(A) . Hessenberg form of A
Set T = ΦTY
repeat

1: B = QTQ, O(Nr2)
2: [V,S] = schur(B), . Schur form of B O(r3)
3: C = (T + µW)Q, O(NKr)
4: F = UTCV, O(N2r)

5: (siiH + λ∗IN )xi = fi, . i = 1, 2, . . . , r O(rN)

6: P = UXVT , O(N2r)

7: Q = CTP
(
PTAP + λ∗Ir

)−1
, O(N2r)

8: W = SHRD(λ1/µ)(PQT ), O(NK)

9: Project W onto RN×K+ O(NK)
until convergence
Output Ŵ

IV. EXPERIMENTAL RESULTS

In this section, the performance of ALMSpLRU is eval-
uated using both simulated and real data experiments. The
proposed algorithm is compared with two state-of-the-art
unmixing algorithms, namely CSUnSAL, [3], and MMV-
ADMM, [6]. CSUnSAL is a single-pixel based sparse unmix-
ing algorithm that allows for the non-negativity constraint. On
the other hand, MMV-ADMM, similarly to ALMSpLRU, is a
window-based method, that aims at exploiting the presumed
spatial correlation of homogeneous regions of hyperspectral
images. To this end, MMV-ADMM seeks abundance matrices
characterized by a joint-sparse structure.

For the experiment conducted on synthetic data, the mean
square error (MSE) and the signal to reconstruction error
(SRE) were employed as objective metrics for evaluating the
performance of the three algorithms. MSE is defined as,

MSE =
1

NP

P∑
i=1

‖ŵi −wi‖2, (19)

where N,P are the total number of the endmembers and the
pixels in the image, respectively. ŵi stands for the estimated
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(a) Synthetic Image, 16 blocks of size 10×10 pixels
each.

row column
1st 2nd 3rd 4th

joint sparse - 1st (4, 1) (8, 2) (12, 3) (16, 4)
low-rank - 2nd (100, 1) (100, 2) (100, 3) (100, 4)

sparse & low-rank - 3rd (4, 2) (8, 2) (12, 2) (16, 2)
sparse & low-rank - 4th (4, 3) (8, 3) (12, 3) (16, 3)

(b) Structure of W in each block of the synthetic image, each cell contains
the pair :

( |supp(W)|
NK

%, rank(W)
)
.

Algorithm 1st row 2nd row 3rd row 4th row
MSE SRE MSE SRE MSE SRE MSE SRE

CSunSAL 0.18 15.25 1.27 12.36 0.39 15.76 0.54 14.23
MMV-ADMM 0.17 15.78 1.47 12.97 0.42 13.84 0.55 13.50
ALMSpLRU 0.09 21.17 0.46 18.87 0.05 24.29 0.15 20.60

(c) MSE (10−2) and SRE (dB) results on synthetic image for each row.

Fig. 1: Structure of the synthetic image and results.

abundance vector of the ith pixel (which for MMV-ADMM
and ALMSpLRU coincides with the central column vector of
the estimated abundance matrix W), and wi represents the
actual abundance vector. SRE is known to reflect the ratio of
the power of the estimate versus the power of the estimation
error, and is given by

SRE = 10log10

(
1
P

∑P
i=1 ‖ŵi‖22

1
P

∑P
i=1 ‖ŵi −wi‖22

)
. (20)

In this work, for the experiments conducted both on synthetic
and real data, the size κ of the square window and the upper
bound of the rank r are set to 3 and 5, respectively.

A. Synthetic data

In an attempt to explore the estimation performance of
the proposed ADSpLRU algorithm when either or both the
assumptions of sparsity and low-rankness are met for the
abundance matrix W, a simulated hyperspectral datacube is
generated as described below. First, the spectral signatures of
N = 25 endmembers are randomly selected from the USGS
library, [16], to form our dictionary Φ. The reflectances are
observed in L = 224 spectral bands uniformly distributed
in the range 0.4 to 2.5µm. Next, a hyperspectral image of
size 45 × 45 is produced according to the linear mixing
model described in (1). Finally, all the pixels of the image
are corrupted with i.i.d zero mean Gaussian noise of SNR =
30dB.

As shown in Fig. 1a, the synthetic image consists of 4
“block” rows, with each such row corresponding to a distinct
structure of the abundance matrices W’s. To be more specific,
the first row is generated by joint-sparse W’s, the second row
by only low-rank W’s and rows 3 and 4 are produced by
simultaneously sparse and low-rank W’s. Additionally, each
row consists of 4 blocks of pixels of size 10× 10. Each block
is generated by abundance matrices of different sparsity-level
and rank. Further details on the specific parameterization of
the abundance matrices in each block are given in the table of
Fig. 1b.

The sparsity imposing parameter λ1 used in all the tested
algorithms as well as parameter λ∗ of ALMSpLRU that im-
poses low-rankness, were fine tuned with respect to MSE. The
regularization parameter µ is set to 10−2 for all the algorithms.
The table in Fig. 1c summarizes the results obtained for all
the rows of the synthetic image. As it is shown in this table,
ALMSpLRU outperforms CSUnSAL and MMV-ADMM both
in terms of MSE and SRE. Interestingly, this happens not only
for the sparse and low-rank case, but also when the abundance
matrix that produces the data is either sparse or low-rank only.

B. Real data

This section illustrates the performance of the proposed
algorithm on a real hyperspectral image. The image under
consideration is a 150 × 150 pixels sub-region of the Salinas
vegetation scene acquired by AVIRIS sensor over Salinas
Valley in California. Salinas hyperspectral image consists of
L = 204 spectral bands and its spatial resolution is 3.7 meters.
The endmembers dictionary Φ is composed of 17, manually
selected, pure pixel’s spectral signatures.

Fig. 2 shows the abundance maps of four endmembers
that correspond to different plant species, i.e., grapes, broccoli
1, broccoli 2 and lettuce 3, as estimated by ALMSpLRU,
CSUnSAL and MMV-ADMM. By a careful inspection, we
see that all the algorithms provide abundance maps with
similar patterns. Additionally, the proposed algorithm seem-
ingly produces maps with more detailed information especially
concerning the endmembers broccoli 1 and broccoli 2.

V. CONCLUSION

This paper presented a novel semi-supervised hyperspectral
unmixing algorithm. The proposed algorithm aims at exploit-
ing both the sparse representation of the pixels spectra, and the
spatial correlation of homogeneous regions of hyperspectral
images. Thus, we proposed to seek abundance matrices that
are simultaneously sparse and of low-rank. A weighted `1
norm and an upper bound of the trace norm were utilized
for imposing sparsity and low-rankenss respectively. The al-
tenating minimaztion strategy that was developed for solving
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(a) ALMSpLRU
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(b) CSUnSAL
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(c)MMV-ADMM

Fig. 2: Abundance maps of a subregion of the Salinas hyperspectral image.

the novel optimization problem, was shown to offer promising
hyperspectral unmixing results on experiments conducted both
on synthetic and real data.
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