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ABSTRACT

Two new fast multichannel QR decomposition
{QRD) least squares (LS) adaptive algorithms are
presented in this paper. Both algorithms deal with
the general case of channels with different orders,
comprise sealar operations only and are based on
numerically robust orthogonal Givens rotations. The
first algorithni is a block tvpe scheme which processes
all channels jointly. The second algorithm processes
each channel separately and offers substantially re-
duced computational complexity compared to previ
ously derived multichannel fast QRD schemes. This
is demonstrated in the context of Volterra filtering.

1 Introduction

Multichannel LS adaptive algorithms [1] find wide
applications in diverse areas such as channel equal-
ization, stereophonic echo ecancellation. Volterra type
ponlinear system identification. to name but a few.
Among the various issues. characterizing the per-
tormance of an alzorithm. those of computational
complexity. and numerical robustness are of particu-
lar importance. in most applications. Especially the
need for numerieally robust schemes has led to the
development of a class of algorithms hased on the
QR decomposition of the input data matrix,
Multichannel fast QRD algorithms, which spring
from the corresponding single channel fast QRD
schemes, have already been developed [3]-[5]. Both
the cases of equal [3)-[4] and nnequal [3] channel or-
ders have been treated. Especially in [3] a novel
channel partitioning technique is introduced. which
makes possible the manipulation of channels of dif-
ferent orders. Based on this technigue a block as
well as a channel decomposition hased multichannel
QRD algorithm are described.

In this paper. a novel approach for deriving mul-
tichannel fast QRD algorithms is introduced. The
methodology is based on the efficient time update of
a particular vector quantity, which provides all the
necessary for the LS error update. rotation parame
ters. A\ direct consequence of this approach, is that
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Figure 1+ The multichannel model

explicit backward steps are essentially alleviated. o
fact which simplifies the derivation procedure. In the
new block type scheme the basic vector quantity is
updated in one forward step and its computational
complexity is similar to that of the block algorithm of
[5]'. Based on the new block scheme. a new channel
decomposition algorithm is derived. ['he time up-
date of the basic veetor quantity 1s now accomplished
with / forward steps where [ is the numher of chan-
nels. Compared to [5], this algorithm offers signit-
icantly reduced computational complexity i terims
of both multiplications/divisions and square roots.

2 Formulation of the problem

Figure L illustrates the typical L input - single outpul
channel problem. We seek to determine the £ = |
coefficients’ vector ¢(N) to satisfy the following LS
optimization schenie

N
nin ‘)ﬁ ,\'\-—”[;,r[n] (N an))? (1)
e B [

L

) stands for the usual forgetiing factor. ! (V) =
[(:f_—_(_\'] e .t:{_l[.\'_)]. ul(n) = [nf. (n).. .n{l(n IRE
the £ x 1 input data vector and y(n) is the desired

Uil fornutlated (o Ue case of general channel arders
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esponse at time n, k... & denote the channel or-
ders and k = 5 _ ) k. The input-output information
can be used to form the following data matrix

wly  uf(l)
u(2)  u'(2)
V(NN = AN )

YN} u TNy

where A{N) = r//'ﬁ._tf[,\'\;._'!*. A T 1. If Q)
stands for the orthogonal matrix which converts
N into the & = & upper triangular form R{N)
then

piN) RN } )

N (NDMTT(N)] = i
QUEA) (NN [ R0
where p(N) € R¥*! and v(¥) € RIN-F1 It is
obivious from (1).(2) and (3} that ¢ V) is given by

f‘;’[',-\'jc( Ny=p{N] (4)

[ a time varyving environiment. time npdate of R(N)
and p(N) is required. It turns out that all neces-
sary quantities for the update of these matrices can
be obtained from the manipulation of the following
vector term

(N + 1) = AR (N (N 4 1) (5)

Indeed. if QN 1) is a sequence of k GGivens rotations
which annul the efements of —g(V + 1) as follows

e - gl R ( .
QN 4 1)[ (¢ : J]:[é{\')--l)} (6)

then this Q(V + 1) updates RINY as well as p(N)
according to the expression [1]

T MEp(N) ] [ p(v+ 1)
Q1) |: (N -+ 1) T BN+ 1) {

The quantity 8(N + 1) in (6) relates the angle nor-
malized error (A 4+ 1) to the a priorl ervor e(N + 1)

as {ollows [2]
(N + 1) =8N+ 1N+ 1) (8)

In the following sections we present two new multi-
channel fast QRD adaptive algorithms which achieve
the eflicient update of (N + 1),

3 New block algorithm

Without loss of generality we assume that &y > &y >

- iy, The samples of the input data vector u( V)
are properly permuted and the vector ng (V) results,
Specifically. we choose the £ — ks most recent sam-
ples of the first channel 1o be the leading elements
of (A, followed by Lo — Ly pairs of samples of the

fiest and second channel. followed by ki — ki triples
of samples of the first three channels ete. followed
by &; I-ples of samples of all channels. The position
of the first (most recent} sample of the i~th channel
is then given by [§]

739
m,-:Z_J'(k,-—(:,.ﬂ)—e—f' T I e

r=1

We now define the input data vector u{;,(:\' +1) =
[ug N+ 1)...o(N + 1) ul (NV)]S. where S is a per-
mutation matrix which moves u; (N +1) to the m;-th
position. It can then be verified that uf (¥ +1) =
[uf_'(_-\' 1N =k 4+ 1) u(N =k + 1)), that is.
the first & elements of uf, (¥ + 1) coincide with the
input data vector of the next time instant. From .
U4 the corresponding input data matrices (7. Uiy
can be defined, as in (2). If fi’._{._RHb stand for the

" Cholesky factors of these matrices, the respective

vectors gi,8i+s tan be obtained according to (5).
The new block algorithm is based on the npdate of

;. according to the following scheme

ge(N) — gran(N + 1} — gr(N + 1) (9)

From the above definitions it is not diffienlt to show
that [§]

ge(N +1) .
gV 4 1) i

gep(N +1) = [
that is. the first k elements of g (N + 1) provide
the vector gy of the next time instant. Morcover,
by developing the relation between Ri(N — 1) and
f?;-+;(;\"] [8], vector gr(N + 1) can be computed
from g () as follows

et e A b (V- 1)
gra(N+1) =5 Q{,(_.\)[ e }

vi( N 4 1) s a @ x | normalized forward error vector
and Q{(N) is a sequence of Zle (k+1—m;) Givens
rotations, as explained later on.

The new block multichannel fast QRD algorithm iz
shown in Rgure 2. In this figure, the k£ x I ma-
trix Pf.r(.-\") is defined from the equation Hi(N —
DAL(N) = PL(N). where A{(N) is the LS solu-
tion of the multichannel forward problem. Further-
more, l_).l{.-+] = [ (N+1) .. u(N+1)] and (.".{(.-'\-'-i-lj
stands for the angle normalized forward error vector.
1:(\] denotes the Cholesky factor of the forward er-
ror covarance matrix and Qu(N + 1) is a sequence
of I Givens rotations which successively nullify the
elements of (_".'f,(.-\' + 1) with respect to the diago-
nal elements of -‘i'i{:(.-"\’/)- Note that the rotations of
Q{.(.\' + 1) are generated from the successive anni-
hilation of the last & + 7 — m; elements ol the i-th
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[ N +1) } '

|Lg" (N 4+1)

[ vai¥ 41
S"‘“Q:’f-\:" { 1r_t.i \—J ) ]
Bild

R AT i’(.\-‘+|:] A
Serastiyi i b sl =)

k I)L_ﬂ_'\ <+ 11 r—:} J
IR R 0 e U
G QuiN + 1) | I = [ Sl + 1) ]
AL X 2pan = { prlN +1)
T: QRiarat 1) PN Ay T e N )

Boep(N 1) =8N +1)endN +1)
Initiahzation
gil) = 0, pPil0) = 0. ])‘,'.’m.l 3
d,(0) = 1, A0} = pl. {p
Quiny=71. QL =1

. small constant |

Fignre 2: The new block multichannel algorithm

column of i’:[ N4])(fori=1,....0) with respect to
the diagonal elements of . { .'T (N+D
PN is defined from f{;-[ Niep{N) = pelN), where
(N} results from e( V) after its elements have heen

The k1 veetor

permuted as deseribed at the begining of this see-
tion. Finally. ep(N + 1) = (N + 1),

The new alzgorithm of figure 2 18 hased exclusively on
orthogonal Givens rotations, Despite its block na-
ture, the algorithm comprises scalar operations only.

Due to step 5 of figure 2. the proposed scheme is of
O(47) computational complexity. similar to that of

the block multichannel algorithm of [3]. Reduction

of the computational burden by an order of mag-

uitude is achieved with the chanuel decomposition
based algorithm of the next section,

4  New channel decomposition algorithm

The camputational complexity can be redunced if the
first step in (D) 15 decomposed i / forward steps.
This is accomplished by defining the following input
N = (a4 D ul (V)] and

"1+ (N + )= [w(N +1) n“r,_l(_-\-' +: 1)} Sedor i =

data vectors: ug

o3 L S5 a permutation matrix which moves
w AN 4 1) to the m;-th |?fN|Hc)1l after left shifting
the first my — | elements of IIH_, AN +1)0 The

[ollowing input data matrieces can now be defined for

L e

uf, (1)
uf_;,('_’]
Uk (V) = AN ¥ {11

i
L Wegiliv)

If f-fh-_f[' N stands for the Cholesky factor of
e A N ). the corresponding vectors gy (N =+ 1] can
be ._\pn-aa(-(l as

G =1f2 T 5r v \ [
e NV + 1) = ATVERD (N (N 4+ 1) (12)
Time update of g (V) ean now be realized according
to the following scheme

Br(N) — gre (N + 1) grp(NV + 1)

It is clear that hecause of (10) explicit backward
steps are essentially avoided and thus our methad-
ology only requires forward steps.

[rom the above vector definitions and the relations
between successive Cholesky factors for i = 1...../
[6], we obtain the following expressions

gL (\_]J 2hlll,-\.][7

[ .
y S v i) (N 4+ 1)
o s P

Q{:: N s a sequence of (k-+ ;) —my; Givens rota-

tions 1]1-\1 nullify the last (& 4 1 elements of a
rotated vector ])'.{_’;,_I(_-\"] with respect to the enerpy
Er:f_ir (V) in a hottom-up procedure. The time up-
date of Px+: | 1s realized through the application of
a Givens matrix “\+-_I|' whose rotations have heen

computed in the previous forward step as follows

t=1 =B Efi- (N) [ 0
Qli+a—l { +| ; ]:\‘ah—l\ <Y

.\4—f—|[ N

Ispecially the rotations produced at the -th forward
step are used in the filtering part of the algorithm as
well as in the first torward step of the next time in-
stant.

The new algorithm is shown in figure 3. Since £
rotation parameters are essentially nsed in the filter-
ing section. each forward procedure can be restricted
to & elementary steps (iustead of & + ¢). In fig-
ure 3. ffj’_ I T e i Ml

é & fdd) : g Bhys e nn

L rotation angles of Qi._'d._,._'l(_-\ ) while @ ;-' NN+ 1),

J=my mi+ L k are the last b —n; + 1 rotation
fley (£

.Hl“]t\ of Ql+'— (¥ +1). P (N s the j-th element

ko stand for the first

of ])'H_r AN) and _x/'-_l(_\ + 1) denotes the j-th ol-
ement. of gi (N + 1) In order to maintaimn a uni-
fied notation the following conventions are adoptoe
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1=\/ua"'|.'\-
s
BARRE

eafsl i+ 13 =

fafet iy ) =
ity
tar j o= m, 1k, (Step 4]
at ""‘r.\u)-'+|-.-‘.|'_| I + 1313
a1 Ay
Bt
) -.-l:_'l-:.\.l:i-
i [0S v =
it N

end; [ 1-locp |
for § = 11k, (Stap &)

] LX) (RIR]
Pt 1) = Al s UMy gy 4 snfed 7t + L iy 1)
et 1y = amafetM v 2 ey ie + 0 - R L PR S P
o
v A e g 1.
epiN + 1= RAELE + ity + 1)

Inittalization

1]

Lt = s =12

=10

Fignre 3: The new channel decomposition algorithm

for the /~th forward step f‘?l_":{_\') = f’f‘J'J:'(.-\' + 1),

I:III[__\' + 1) Al _t.]:l:__li['__'\"_\ll = I.Irl.lil_l:r\'_\' + 1}

The multichannel algorithm of figure 3 s based ex-
clusively on orthogonal Givens rotations, As a re-
sult. 1s numerical performance s expected to be fa-
vorable, The new algorithnr offers veduced computa-
fional complexity of compared to the channel decom-
posttion based algorithm of [3]. The computational
requirements of the two algorithms for the second or-
der Volterra problem treated o {3]. ave shown i ta-
ble |, We observe that the new algorition offers sig-
wificant computational savings o ferms of both the
wimber of multiplications/divisions {155 less) and
the number of square roots (20% less). This im-
pravement can he even greater for a different applica-
tion (in the higher order Volterra case, for instance).
Morcover. it can he shown that a modification of the
algorithi of figure 3 leads to a scheme which can
e implemented an a cireular systolic architecture
[7] where the a priari error is produced every / clock
eveles. Note that there is not such a possibility for

[Ale. | Mults/ Divs 50 Sqrt. s |
| 5] [ 760 +3850° +O(L) | 20" +2.7L° + Oi L}
[New | 650" +21507+O(L) | 5L +15L° + Oi L)

[able 1: Comparison of complexities

corresponding algorithm of [5].
It can be shown that the fast QRD aglorithms of
[3]-[5] are obtained if one adopts the vector

qe(N) = Ry T (N pag(V)

in place of gi. Then, a sumilar methodology can also
be followed for the derivation of these algorithms. {n
other words. our technigue provdes @ unified frame-
work for the development of multichannel fast QRO

algorithms.
5 Conclusion

Two new multichannel fast QRD algorithms ave de-
scribed in this paper. The algorithins are based on
numerically robust orthogonal Givens rotations and
consist of scalar operations only. Moreover. the sec-
ond algorithm offers substantially reduced computa-
tional complexity compared to a known algorithm of
the same category.
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