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ABSTRACT

In this paper an eflicient block adaptive implementa-
tion of the widely used Decision Feedback Equalizer
is developed. Both the feedforward and the feedback
filters of the equalizer are updated once every A ‘sam-
ple time intervals, with /A’ being the block length.
However this block adaptation is done in such a way
that che resulting filters. as well as the decisions, are
identical to those computed by the conventional sam-
ple by sample LMS based DFE (LMS-DFE). That is,
the new block adaptive algorithm is machematically
equivalent to the LMS-DFE algorithm (and hence it
features identical performance). At the same time
the proposed algorithm offers substantial computa-
tional savings as compared to the sample by sample
LMS-DFLE. Thus the new block DFIZ turns out to be
particularly suitable for applications in which long
equalizers are required.

1 INTRODUCTION

A major cause of performance degradation in
data transmission through dispersive communication
channels is the introduced Intersymbol Interference
(ISI). One of the most snccessful techniques used
in practice in order to drastically reduce the ISI is
the well known Decision Feedback Equalizer (DFE).
However in a number of applications the computa-
tional complexity of the adaptive equalization part
may be prohibitive. The excessive burden is mainly
due to the long feedback part of the DFE, which is
imposed by the nature of the problem. Indeed in
many applications the tail portion (postcursor part)
of the impulse response is much longer-than the front
portion {precursor part) and may Iast from almost
one hundred up to several hundreds of baud inter-
vals. Typical applications of the kind are high speed
digital transmission over the digital subseriber loop
[1]. microwave communications via line-of-sight links
(2] and digital TV terrestial broadeasting [3].

A possibie way to reduce complexity would be to
develop a block adaptive filtering formulation of the
conventional sample-byv-sample DFE. However in or-
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der to obtain the decision symbol at a given time n
the respective decisions at times n—1.n—2,....n—N
are required (where V is the length of the feedback
filter). Therefore, it is not possible to obtain more
than one decisions at a time. A block solution to the
problem, implemented in the frequency domain. has
recently been presented in [5]. However this tech-
nique, in order to retain its efficiency. imposes cer-
tain restrictions on the block length with respect to
the lengths of the Feedforward (FF) and the Feed-
back (FB) filters of the DFE. These restrictions may
be undesirable in some applications where we need
more flexibility in the choice of the block length {and
the processing delay accordingly).

A block adaptive filtering technique, suitable only
for linear equalizers, was recently introduced in [7].
The unknown filter coefficients are updated in a man-
ner which is mathematically equivalent to the con-
ventional LMS and for this reason the new technique
is called Fast Exact LMS (FELMS). Reduction of the
computational complexity of the FELMS algorithm
is achieved due to the application of a fast FIR fil-
tering scheme that was originally described in [6].
It should be noted that the block size can be much
smaller than the filter’'s order and therefore a rel-
atively small processing delay is introduced. How-
ever this technique cannot be applied directly 1o a
DFE scructure since future decisions required by the
blocks are not readily available.

In this paper, motivated by the algorithm in [7], we
develop a new block DFE which is mathematically
equivalent to the conventional LMS-based sample-
by-sample DFE but with considerably reduced com-
putational load. In order to compute efficiently the
decisions at a given block we properly decompose the
FD parc and perform the internal computations in a
specified manner. The derivation steps of the new
algorithm are described in Section 2 while in Sec-
tion 3 computational issues are discussed. Finally,
in Section 4 the simulation results of a typical chan-
nel equalization experiment are given.
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5 THE FE-DFE ALGORITHM

The new block DFE. called hereafter Fast Exact DFE
(FE-DFE), consists of a filtering and an updating
part. In she filtering part the decisions corresponding
to the current block are produced, and in the updat-
ing part new estimates of the FF and FB filters are
computed based on the respective estimates I time
instants before. Although computed en block all the
above quantities are identical to those obtained by
the conventional sample by sampie LMS-DFE, that
is. the two algorithms are mathematically equivalent.

To start our derivation let us first formulate the
conventional sample-by-sample LAMS-based DFE al-
gorithm as below.

yik) = ak (k)xar(k+ M — 1)+ b (F)dn(k—1) ( 1)

dik) = f{y(k)} (2)
e(k) = dik) — y(k) (3)

ans(k+ 1) = ap(k) + p'xu(k+ M — Le(k) (4)-
)

ba(k + 1) = by (k) + ptdn(k — De(k) (5

where xa; (k+M —1) = [z(k+M-1) ... z(k))? con-
sists of M input samples and dy(k = 1) = [dik —
1)...d(k— )" consists of N decision samples. Vec-
tors ay (k) and by (k) denote the M-th order FF and
the N-th order FB filter respectively. f{-}inEq. (2)
stands for the decision device function.

Given the estimates of the FF and I'B filters at
time n — K + 1 the aim is to compute the next K
decisions as well as the new fiiter estimates at time
n+1. The two parts of the new DFE are described
below.

Filtering part

Successive application of Iigs. {4),(5) and a proper
combination of the resulting formulae leads to the
following expressions

apgln—14+1) = ag(n— K +1)
+ ptX (e (n—1t) (6)

ba(n—-1+1) = bain — K +1)

+ D begain—1 (7

where X (1) = [xar(n+M =K} Xu (M —1=1)]
is an M x (K — 1) masrix and D(n;l) = [dnin -
KYy---dy(n—1=1]isan N x (K - [) matrix. Vector
i_n=10=len- K1y et )] I' consists of
the respective filtering errors in reverse order. The
above expressions are derived ford=K~—1,...,1

If we now substitute Eqs. (1) and (6).(7) to Eq.
(3) and group together the resulting error formulae,
we end up with the following representation

A 1
o o—

é}\(”’) = d.f\":”) £

N 0)ayn = K+ 1)

o

~ DY(m:0)bain—~ K + 1)
i

3

T I:-S.[(nj + Sd{”’,"',"él\(”} Ib\'

where di(n) [din — K + 1) r[(n.]‘j."" and
S.(n), Sa(n) are lower triangular matrices with zero
diagonal elements. Their nonzero elements are given
by

(S} =

poxl (n+ M — K +i—1)xun+ M-K+j-1

(Sa(n)}iy = wdk(n— K +i—-1)dn{n-K 44=1)
10 Sl A A e Teandd =L i = b The
matrix-by-vector product of term B in (8) can be
viewed as an FIR filtering problem. Therefore, hav-
ing collected K new channel output samples (i.e.
z(n+ M- I()‘x(nq—.-l'I—I('J.—l\_]._ ... xln4+M—1)) the
fast FIR scheme of [6] can be applied. However, this
is not, the case for the term € since this involves {u-
ture decision samples. Specifically, at time 11— K+1,
the first j — 1 elements of vector dn(n — j) are un-
known, for 7 = I, KX = 1,..., 1 (which means that
only vector dy(n — K) is completely known). Term
D) cannot be computed as well becanse matrix Sy(n)
involves fugure decision samples. Finally, term A is
completely unknown.

To see how to overcome this problem, let us take as
an example the case K = 4. By properly rearranging
the involved elements, term C can be written as

dl dal di di [ b
dl df di dg || b
df dl df d b
dl df di d; by

(9)

where d; and b; are the corresponding polyphase
components of the decision vectors and the FB fil-
ter respectively, that is di= [dn—i-=1) -~ d(n—
i—1 - 4j) din —i — N + 3] for i =
0,...,6, and j = 0.1,....(N/4) ~ 1 and b=
[bi f)" B B E}g.-_;_, 4= b,-_‘t\. .4].;.[1"1 - 3:] fori =1, 1..3.3
Note that the polyphase vectors are denoted as bold
slanted with a subscript indicating their polyphase
index. Following the scheme suggested in [6] the
above matrix-vector multiplication takes the form
[ dY(bo + by + by + by) + (da — da)" (b + b5) |
+ (ds — d3)" (b2 + b3) _
[(do — d) — (ds — d3)]" b3
dl (by + by + b+ b3) — (ds — da)? (bo + b2)
+ (dg — d3) "' (b2 + ba)
2 — [{ds — d3) — (ds — ds)¥ bs
dl'(bo + by + bs + by) + (da — d3)" (by + ba)
T (d.‘g - d] )Il(b(j =+ b[j
= Hd-l - dy) — (ds — dlj.{.llbl
dl.il(b() + by + by + b3) — (ds — do)! (by + b2)
+ (dy — dy) " (bo + by)
+ {(dy — dy) — (ds — do)1 " bo _|

(10)
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From the first row of the matrix in (10) it is read-
ily observed that for the computation of the first
element of term C only the polyphase components
dy, dy, d=, dg of dx (N — 4) are required, which are
already known. The first element of term B is cal-
culated in a similar manner and the sum of these
two elements, say y(n — 3), provides the next deci-
sion sample as d(n — 3) = f{y(n — 3)}. Note that
in this first step of the recursive procedure there is
no contribution from term D, due to the structure
of matrix Sp(n) + Sa(n). The error term e(n — 3) is
obtained as e(n — 3) = d(n — 3) — y(n — 3).

Having calculated d(n — 3) (which is also the first
element of d»), the'second element of term C can be
computed as in (10). Moreover, the unknown (2,1)-
element of matrix Sy(n) can now be obtained. In
the sequel, d(n — 2) and ¢(n — 2}, to be used in the
next step., can be computed (note that from now on
there is a contribution from term D). Proceeding in
a similar manner, all the errors can be obtained.

[t must be noted that having calculated a particu-
lar decision sample, all the elements of the respec-
tive row of S¢(n) can subsequently be computed.
Also, due to the lower triangular structure of ma-
trix Sy(n) + Sy(n) only the errors that have already
been calculated in previous steps are involved in the
computation of elements of the term D. Finally, due
to the row by row computation of matrix Sy(n), the
elements of each row can be recursively obtained in
a way similar to that also used for the corresponding
elements of S;(n), as proposed in [7].

Recall that the above procedure was shown for
K = 4; however it can be easily generalized for any
block length.

Updating part

In the updating part of the FE-DFE the FF and I'D
filter estimates are computed from their respective
values K time instants before. Indeed, if we write
equations (6) and (7) for [ = 0, we get

apy(n+l) =ay(n—K+1)+p‘X(n:0)éx(n) (11)

ba(n+1)=bax(n—-K+1)+ y,bD(n: Oex(n) (12)

Having calculated the decisions d(n—K+1),...,d(n)
as described above, the fast scheme of [6] can be di-
rectly applied to (11) and (12) leading to a reduction
in the number of operations required.

3 COMPUTATIONAL COMPLEXITY

Due to lack of space a detailed analysis of the com-
putational complexity of the proposed scheme will
not be provided. Assuming that K is a power of two
(i.e. KX = 2") it can be shown that the multiplica-
tions and additions required by FE-DFE are given
by

52" -9

o
My=2(=)"(M+ N
d {4J (M Ji 5

P IR 3
A = 22(5)™ = 1)(M +N)/2™ +(4-2" = 1)+ 7(5)"

where My is the number of multiplications per de-
cision and A, is the corresponding number of addi-
tions. The “optimum” m which provides the smallest
number of multiplications is given by

Mopt = —1.125 £ 0.7logy (M + N)  (13)

In Table 1, the number of operations required by the

Parameters LMS-DFE FE-DFE
M N K | Mults. Adds. | Muits. Adds.
16 64 8 160 160 892 160
32 128 16 320 320 137 2tl

32 256 32 576 376 212 425
64 512 32 1152 1152 349 681
128 1024 064 2304 2304 565 1109

Table 1: Comparison of Computational Complexities
(multiplications and additions required per decision)

FE-DFE is compared with that of the classical LMS-
DFE, for different values of M.,N and for m chosen
according to (13). We observe that, using FI-DFE,
a significant reduction in computationai complexity
is achieved. As it it will be verified experimentally
in next section, the substantial improvement in com-
plexity is obtained with no loss in performance.

4 EXPERIMENTAL RESULTS

In order to verify the correctness of the proposed
scheme, a typical experiment in the context of multi-
path echo cancellation in digital TV terrestial trans-
mission was carried out. The impulse response of the
multipath channel consisted of 6 echoes with ampli-
tudes -10dB,-7dB.-6dB,-10dB,-14dB,-4.5dB and de-
lays -20T,,-127,107,407,,707,1407, respectively
where T, is the symbol time interval. The echo
phases were chosen randomly. Notice the existence
of a very strong far echo of -4.5dB. The impulse
response of the channel used in our experiment is
shown in Figure 1. The input to the channel is taken
from a binary alphabet (£1), while its output is cor-
rupted by additive white Gaussian noise. The vari-
ance of the noise is such that the channel output SNR
equals 15dB.

In Figure 2 two mean squared error curves are de-
picted, although they are not distinguished. One
corresponds to the LMS-DFE and the other to the
proposed FE-DFE. The orders of the FF and FB fil-
ters were taken equal to 32 and 256 respectively and
the step size parameters were chosen equal to 0.0015.
In the case of the FE-DFE, the block size I( is 32.
chosen according to (13) (see also Table 1). The
experiment verifies that the performance of the pro-
posed algorithm is identical to that of the LMS-type
scheme as expected from the analysis of the previous
section.
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5 CONCLUSION

[n this paper a block adaptive version of the LMS
hased Decision Feedback Equalizer was derived. The
new algorithm is mathematically equivalent to its
sample-by-sample counterpart offering at the same
time considerable compurational savings. Due to its
computational efticiency the new algorithm is partic-
nlarly attractive in many practical cases and espe-
cially in applications which involve very long equal-
izers.
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Figure 1: The impulse response of the multipath echo
channel.
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Figure 2: Mean squared error curves.
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