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ABSTRACT

A new fast multichannel QR decomposition (QRD) least
squares (LS) adaptive algorithm is presented in this paper.
The algorithm deals with the general case of channels with
different number of delay elements and is based exclusively
on numerically robust orthogonal Givens rotations. The new
scheme processes each channel separately and as a result it
comprises scalar operations only. Moreover, the proposed
algorithm is implementable on a very regular systolic ar-
chitecture and offers substantially reduced computational
complexity compared to previously derived multichannel fast

QRD schemes.

1 INTRODUCTION

Multichannel least squares adaptive algorithms [1] are be-
coming increasingly popular due to their fast converging
properties, and they find wide applications in diverse areas
such as channel equalization, stereophonic echo cancellation,
multidimentional signal processing, Volterra type nonlinear
system identification, to name but a few. Among the various
issues, characterizing the performance of an algorithm, those
of computational complexity, parallelism and numerical ro-
bustness are of particular importance, in most applications.
Especially the need for numerically robust schemes has led
to the development of a class of algorithms based on the QR
decomposition of the input data matrix, via the Givens ro-
tations approach.

Multichannel fast QRD algorithms which spring from the
single channel fast QRD schemes [2]-[4] have already been
developed [6]-[8]. Both the cases of equal [6]-[7] and un-
equal [8] channel orders have been treated. Especially in
[8] a novel channel decomposition technique is introduced,
which makes possible the manipulation of channels of differ-
ent orders. This channel decomposition procedure leads to a
multichannel fast QRD algorithm consisting of ! single chan-
nel fast QRD algorithms of length &k, where [ is the number of
channels and % is the sum of the channel orders. These ! sin-
gle channel algorithms are interdependent and are executed
sequentially, one after the other. The resulting algorithm is
of O(kl) computational complexity.

In this paper, a novel approach for deriving multichannel fast
QRD algorithms is introduced. The new technique is based
on the efficient time update of a particular vector quantity,
which provides all the necessary for the LS error update,
rotation parameters. A direct consequence of the new tech-
nique, is that explicit backward steps are essentially allevi-
ated, a fact which simplifies the derivation procedure. The
proposed methodology is also direct and insightful in that all

algorithmic quantities involved have an obvious LS meaning
and interpretation.

Based on the new technique a fast multichannel QRD algo-
rithm is presented in this paper. The algorithm deals with
the general case of unequal channel lengths. The channel
partitioning used in [8] in the context of Volterra filtering,
is also adopted here and the new algorithm consists of [ sin-
gle channel algorithms of the type of [5]'. The proposed
scheme can be implemented on a circular systolic architec-
ture in which the single channel algorithms are executed
in a pipelined fashion. In contrast, the channel decompo-
sition based algorithms of [6],[7],[8] are strickly sequential
for each time iteration. Moreover, compared to [8], the
new algorithm offers reduced computational complexity in
terms of both multiplications/divisions and square roots.
This fact becomes apparent from the methodology adopted
and is demonstrated with a specific example which concerns
Volterra type nonlinear filtering.

2 FORMULATION OF THE PROBLEM

The standard exponentially weighted LS problem is that of
selecting a k x 1 coeflicients’ vector ¢(N) to satisfy the fol-
lowing optimization scheme

N

_ : N—n _ T 2
ay(N) = gg}g); AT y(n) — ¢ (N)u(n)] (1)
A stands for the usual forgetting factor with 0 < A < 1, u(n)
is the k£ x 1 input data vector and y(n) is the desired response

at time n, n = 1,2,..., N. The input-output information
can be used to form the following N x (k 4 1) data matrix
y(1) uz(l)
y(2) u (2)
sw=amy | ] (2)
y(N) u’(N)
. N—1 _ N-2
where A(N) = diag[A™= ,A7z ,...,1]. If Q(N) stands for

the orthogonal matrix which converts U(N) into the k x k
upper triangular form }?(N) then

QMY (MU (N)] = [ 5% Rgv ) ] ¥

where p(N) € R**! and v(N) € RW=R)Ix1 " Gince multipli-
cation with an orthogonal matrix is norm preserving, it is

1 Actually, the lattice type algorithm of [5] is slightly different



straightforward from (1),(2) and (3) that ¢(V) is given by
R(N)e(N) = p(N) (4)

In a time varying environment, time update of R(N) and
p(NV) is required, as new information becomes available. It
turns out that all the necessary quantities for the update of
these matrices can be obtained from the manipulation of the
following vector term

RT(N)u(N +1)
VA

Indeed, if Q(N + 1) is a sequence of k elementary Givens
rotations which annul the elements of —g(N + 1) as follows

—g(N +1)

g(N +1)= (5)

0

QIN+1) (6)

1 §(N +1)

then it can been shown [9] that this Q(N +1) updates R(N)
as well as p(V) according to the expression

A/2p(N) p(N +1)

QN +1) (7)

y(N +1) é(N +1)
The quantity §(N+1)in (6) equals to the inverse of the angle
normalized variable which relates the angle normalized error

E(N +1) to the a priori error e(N + 1) [5]
e(N+1)=686N+1e(N+1) (8)

The efficient update of e(N+41) is at the heart of our problem.
It 1s defined as

e(N+1)=y(N+1)—c"(N)u(N +1) (9)

Finally note that the time update of the minimum squared
error (energy) ay(N) is realized as follows [1]

ay(N +1) = day(N) + [¢(N + 1)) (10)

In the next section, a new multichannel fast QRD algorithm
is developed. It is shown that each step of the algorithm can
be treated as an LS problem of the type described in this
section, a fact which unifies the derivation procedure.

3 THE NEW ALGORITHM

Let us consider ! input channels of lengths k1, ko, ..., ki re-
spectively and k = er=1 kr. Without loss of generality we
assume that k1 > k2 > --- > k;. A critical point of our
methodology 1s the selection of an appropriate partitioning
of the input samples which appear in the input data vec-
tor ux(N). Specifically, we choose the k1 — k2 most recent
samples of the first channel to be the leading elements of
ux(V), followed by k2 — ks pairs of samples of the first and
second channel, followed by ks — k4 triples of samples of the
first three channels ... followed by k; I-ples of samples of all
channels. Tt is now straightforward that the position of the

first (most recent) sample of the i-th channel is given by

1—1

mi= Y r(ky — kpy1) +1

r=1

i=1,2,...,1

Starting from ux(N) we define the input data vectors:
ul, (N 41)=[ur (N +1),ul (N)] and u} (N +1)= [ui(N +

1),u£+i_1(N +1)]S; for i = 2,3,...,1. S; is a permutation
matrix which moves u;(N + 1) to the m;-th position after
left shifting the first m; — 1 elements of uj ;_;(N + 1). It
can be easily verified that u{+l(N+ 1) = [ug(N—l— 1),u1 (N —
ki +1),..., wi(N — k; + 1)] that is, the first & elements of
u;, (N + 1) provide the input vector of the next time in-
stant. The following input data matrices can now be defined
for:=10,1,...,1

u§+i(1)
w;y(2)
Uk4i(N) = A(N) . (11)
iy (N)
If Rk+i(N) stands for the Cholesky factor of Uryi(N), the
corresponding vectors gk+i(N + 1) can be expressed as
REf (V) wss N £ 1)
VA

The gir(N) vector will also be the critical quantity here.
From the discussion above and (12) it is not difficult to show
that

grti(N +1) = (12)

(13)

(N +1) = [ gr(N +1) ]

g (N +1)

where g(k)(N—l— 1) consists of the last ! elements of gp4i1 (N +
1). Time update of gix(N) can now be realized according to
the following scheme

gr(N) = grt1(N +1) = - — grpi(N +1)

This procedure involves | “forward” steps which will be de-
scribed below. It is clear that because of (13) explicit back-
ward steps are essentially avoided and thus our methodology
only requires forward steps.

3.1 Forward step 1

From (11), the input data matrix Ux41(N) can be written
as

AT (1) o’
Upss (V) = A3 .u1(2) ( ) (14)
: Ug(N -1
U1(N)

The last expression defines a (forward) LS problem (see
Eq.(2)) whose scalar desired response is the input of the first
channel. From (14), the definition (12) and the input vector
partition u{+1(N+1) =[u1(N+1), ug(N)] we easily deduce

(5]

(V1)

g (N +1) = Q[ (W) (15)

gk(NV)

TE;) (N—l—l) stands for the k-th order normalized a priori error
expressed as

e (¥ +1)
VG (V)

Qi(l)(N) is a sequence of k elementary Givens rotations
which are produced by annihilating in a bottom-up proce-

(N 1) = (16)

dure the elements of the rotated reference vector p%l)(N)



with respect to the square root, &gﬁ”(N), of the energy (cor-

responding to the LS problem (14)) [5]

QW) =
pi’ (V)

i (V) [%Wm
(17)

0

Note that the lower order quantities rgl)(N—l—l), &(1)(N),j =
k,k—1,...,1 are successively computed from (15) and (17).
The time update of p%l)(N) is realized according to the for-
mula

P, (N +1)
= (18)
EV (N +1)

Q(O)(N) )‘1/2P§gl)(N)
k

QAECO)(N) is a sequence of k Givens rotations which annul
—gr(N) with respect to 1 (Egs. (6), (7)). During this pro-
cedure the quantities 5]0 (N)j=1,2,...,k are successively
generated. Furthermore, in (18) the angle-normalized errors
égl)(N +1),7 = 1,2,...,k are calculated through the ap-
pllication of QAECO)(N). Finally the annuling of gry1(N + 1)
obtained from (15)

0
= (19)
80 ()

. —gr+1(N +1)
Qi1 (N)

1

yields the rotation angles of Qgﬁl_gl(N) as well as 651)(]\7) J =
1,2,...,k+ 1, which are used in the second forward step.

3.2 Forward step ¢ for : =2,...,1

The input data matrices Up4i(N) and Ug4i—1(N) are related
as follows

A2 ui(l
Uiy = | 4740 s @)
: Ukgi—1(N
Ly O

Starting from (20), it can be shown that the following equa-
tion holds [10] (due to lack of space details are omitted here)

()
A Tigia (N +1)
gt (N +1) = STQLY)_ (V)

grti-1 (N +1)

Q£$3_1 (V) is a sequence of (k + 1) — m; Givens rotations

that nullify the last (k1) —m; elements of p%lli_l(N) with
respect to &%lli_l (N) in a bottom-up procedure. As a re-
sult, it is obvious from the last equation that the first m; —1
elements of gryi(N 4+ 1) and grii—1(N + 1) are identical.
The time update of p%lli_l(N) is realized through the ap-
plication of a Givens matrix ng_l__ll_)l (N) in a way similar to
(18). Moreover, the rotations required in the next forward
step are computed from the equation

. —gr+i(N +1)
@it (N +1)

50

1 k41

(V)

It has been stated, however, that the first m; — 1 elements
of giti(N + 1) and gri—1(N + 1) are equal. As a con-
sequence, the first m; — 1 rotation parameters of the :-th
forward step have already been calculated in the previous
forward steps. Such an observation can lead to a significant
reduction of the computational complexity of the proposed
algorithm depending on the channel orders. Especially the
rotations produced at the I-th forward step pass to the filter-
ing part of the algorithm as well as to the first forward step
(of the next time instant) leading to a circular functionality.
The new algorithm is shown in figure 1. Since k rotation
parameters are essentially used in the filtering section, each
forward procedure can be restricted to k elementary steps
(instead of k 4 7). Furthermore, each procedure can be exe-

cuted in a forward manner [10]. In figure 1, 951_1)(]\7), j =
1,2,...,k stand for the first k rotation angles of QAgﬁl_I__ll_)l (N)
while (;551)(]\7—1—1), j=mi,m;+1,...,k are the last k—m;+1
rotati‘0n angles of Q£$2_1 (N+1). pgl)(N) is the j-th element
of p%lli_l (N) and ggl_)l (N + 1) denotes the j-th element of
gr+i(N + 1). In order to maintain a unified notation the
following conventions are adopted for the I-th forward step
0O (V) = 67 (N 1), 8V (N) = 67 (N + 1) and ¢{, (N)
=g (N+1),j=1,2,...,k

The multichannel algorithm of figure 1 is based exclusively
on orthogonal Givens rotations. As a result, its numerical
performance is expected to be favorable. For channels of
equal orders (k = Ip) the new scheme is of O(pl*) computa-
tional complexity which is is similar to that of other known
channel decomposition based fast QRD schemes [6],[7]. In
the general case of different channel orders, however, the
proposed algorithm is of lower computational complexity
if compared with the fast QRD scheme of [8] (which also
treats unequal channel lengths). Specifically, the compu-
ational requirements of the two algorithms for the second
order Volterra problem treated in [8], are shown in table 1.
We observe that the new algorithm offers significant com-
putational savings in terms of both the number of multipli-
cations/divisions (11% less) and the number of square roots
(20% less). This improvement can be even greater for a
different application (in the higher order Volterra case, for
instance).

The new algorithm can also be implemented on a very regu-
lar systolic architecture, as shown in figure 2. The architec-
ture comprises [ identical sections and each section consists
of k blocks. The i-th section is excited from the i-th channel
and essentially implements the :-th forward step. The blocks
of the i-th section transfer the necessary values of g(i),H(i)
and 6 to the corresponding blocks of the (i 4+ 1)-th sec-
tion. The last, [-th, section passes these quantities to the
first channel leading to a circular implementation. It also
sends the angles Hgl) to the filtering section of the architec-
ture (not shown in figure 2).

The proposed architecture is pipelinable at the order level,
that is the throughput provided is constant, independent of
k. This is achieved if we let the ! inputs to be applied in
a skewed manner from top-to-bottom. The skewing of the
inputs ensures the synhronization of the different building
blocks of the circular architecture, which provides the output
error every | “clock cycles”. Note that the fast channel de-
composition based QRD algorithms of [6],[7],[8] are strickly
sequential for each time iteration.



Alg. Mult.’s/Div.’s
[8] | 7.66L% +30.5L% + O(L)
New | 6.83L° 4+ 23L% + O(L)

Sqrt.’s
2L +3L7 + O(L)
2L +2L° + O(L)

Table 1: Comparison of complexities of multichannel fast

QRD algorithms

4 CONCLUDING REMARKS

Least squares adaptive algorithms based on the QR decom-
position of the input data matrix are very promising due to
their numerically robust performance. In this paper, follow-
ing a novel technique, a new multichannel fast QRD algo-
rithm was developed. Besides its good numerical properties,
the proposed algorithm exhibits some other nice features,
such as fast convergence, low complexity and enhanced par-
allelism and pipelinability. As a consequence, the new al-
gorithm is amenable to efficient implementations on systolic
array architectures with short wordlengths and fixed-point
arithmetic. As the number of applications which accept a
multichannel formulation increases, schemes of the type pre-
sented in this paper appear to be appropriate algorithmic
tools.
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end; { j-loop }

end; { i-loop }

for j=1:k,

P (N +1) = A1/2 cosle () (W 4 1)]p; (V) + sinle (O (v 4 11y (v + 1)

G(N+1) = cos[@;u)(N + DI g (N 41) — AL/2 sin[ego)(N + DIy (N);
end;

er(N+1) = 5£°)(N + 1)y (N + 1);

Figure 1: The new multichannel fast QRD algorithm
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Figure 2: A systolic architecture for the implementation of
the new algorithm



