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ABSTRACT

In this paper a novel approach is presented for spectral un-
mixing in hyperspectral remote sensing images. By assum-
ing knowledge of the number and spectral signatures of the
materials present in an image, efficient estimation for their
corresponding fractions in the pixels of the image is devel-
oped based on a recently proposed maximum a posteriori
probability (MAP) method. By exploiting the constraints
naturally imposed to the problem, closed form expressions
are derived for the statistical parameters required by the MAP
estimator. The proposed method offers significant computa-
tional savings compared to a quadratic programming based
approach. As shown by simulations conducted on real hype-
spectral data collected by the HYDICE sensor, this gain in
complexity is attained with only a slight degradation in per-
formance.

1. INTRODUCTION

Hyperspectral remote sensing has gained considerable atten-
tion in recent years, due to its high number of applications
[1]. Hyperspectral imaging sensors have the ability to sam-
ple the reflective region of the electromagnetic spectrum at
a large number of contiguous narrow spectral bands. Thus,
for every pixel in a hyperspectral image, an almost continu-
ous radiance spectrum is created. This spectral information
can be suitably exploited to determine various features of in-
terest in a remote scene. A problem of major importance in
several applications is spectral unmixing [2]. Spectral un-
mixing is the procedure by which the measured spectrum of
a mixed pixel is decomposed into a number of constituent
spectra, called endmembers, and the corresponding fractions,
or abundances, that indicate the proportion of each endmem-
ber present in the pixel. Linear spectral unmixing [3], which
considers that the spectrum of a mixed pixel is a linear com-
bination of its endmembers’ spectra, is more commonly used
in practice.

Hyperspectral unmixing methods can be categorized into
supervised and unsupervised. Supervised techniques, [4]-
[6], assume that the spectral signatures of the endmembers
are known a priori. On the contrary, in unsupervised meth-
ods, [7]-[8], the endmembers’ spectra must be estimated
from the data. In what follows, we assume that the spec-
tral signatures of the materials present in the image are al-
ready known and consider the problem of estimating the cor-
responding abundances. Based on their physical interpreta-
tion, two hard constraints are imposed on the abundance frac-
tions of the materials in a pixel; they should be nonnegative
and sum to one [9]. Therefore, abundance estimation can be

viewed as a convex optimization problem [10], which can be
solved numerically through computationally costly quadratic
programming.

In this paper, a recently proposed soft constrained max-
imum a posteriori probability (MAP-s) method [11] is
adopted and properly adjusted for abundance estimation in
hyperspectral images. In [11], the hard constraints of the
estimation problem are considered as a priori knowledge of
the estimator and described via a suitably computed multi-
variate Gaussian distribution. The mean and covariance ma-
trix of this distribution are obtained by solving a linear ma-
trix inequalities (LMI) optimization problem [12]. In this
work, by exploiting the symmetry of the constraints of the
abundance estimation problem, closed form expressions are
derived for both the mean and the covariance matrix of the
multivariate Gaussian distribution. These expressions can be
used directly to construct the estimator, thus avoiding the so-
lution of an LMI optimization problem. It should be noted
that due to the statistical approach followed to describe the
constraints, the MAP-s estimator will violate the initial hard
constraints. To be able to assess the performance of the esti-
mator, a projection of the obtained solution in the set of con-
straints is also described. The proposed estimation method
offers significant computational savings, compared to exist-
ing constrained optimization techniques, making it especially
attractive for applications involving real time processing of
hyperspectral data. As verified by simulations, this compu-
tational gain comes with no essential loss in the performance
of the method.

The rest of the paper is organized as follows. In Section 2
the abundance estimation problem is defined. The proposed
MAP-s estimator is described in Section 3. Some simulation
results are provided in Section 4, and concluding remarks are
given in Section 5.

2. PROBLEM FORMULATION

In a hyperspectral image, each pixel is assigned an L-
dimensional vector r, where L is the number of spectral
bands. The elements of r correspond to the reflectance en-
ergy measured at the respective spectral bands. By assum-
ing that there exist p distinct materials in the image scene,
also called endmembers, we define the L×p matrix C =
[c1 c2 . . . cp ], where c j is the spectral signature vector of the

jth material. Let x = (x1, x2, . . . , xp)T be the p×1 vector of
abundances associated with r, i.e. x j is the abundance frac-
tion of the jth material in the pixel r. A commonly used
model to describe the combination of materials in a pixel, is
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Figure 1: ASC and ANC define a 2-simplex in the three-
dimensional space.

the so-called linear mixing model (LMM) [3]. According to
this model, r is expressed as follows:

r = Cx + v, (1)

where v is the measurement noise assumed to be zero-mean
and with covariance Σv. Assuming that the spectral signa-
tures c1, c2, . . . , cp of the endmembers are already known,
we are interested in estimating the vector x of abundances.
Two constraints are naturally imposed on the abundance vec-
tor x. The abundance sum-to-one constraint (ASC), i.e.,

p

∑
i=1

xi = 1, (2)

and the abundance non-negativity constraint (ANC), i.e.,

0 ≤ xi ≤ 1, i = 1, 2, . . . , p. (3)

By viewing x as a point in a p-dimensional space, it is eas-
ily shown that the above constraints define a standard (p-1)-
simplex [13], i.e. a simplex whose vertices are the points
corresponding to the columns of the identity matrix. By de-
noting this simplex by S, each point x associated with an
image pixel r must reside inside the hypervolume of S. A
pictorial representation of the ANC and ASC in the three-
dimensional space is provided in Fig. 1. In this case, all
points must lie on the surface area of the standard 2-simplex,
which corresponds to the shaded area in the figure.

3. THE PROPOSED METHOD

The problem defined in the previous section can be dealt
with as a least squares (LS) minimization problem with con-
straints. This turns out to be a convex optimization problem
[10], whose solution relies on quadratic programming meth-
ods. Applying such a method may become prohibitive, due to
its high computational complexity. In this paper we follow an
alternative approach, by properly modifying and extending
the recently proposed soft-constrained maximum a posteriori
(MAP-s) estimator of [11]. The MAP-s estimator belongs to
the class of superefficient estimators, i.e. it always provides
better performance than the LS estimator, in terms of the ma-

trix mean square error (MSE). Let ΣLS ,
(

C
T
Σ
−1
v C

)−1
de-

note the covariance matrix of the unconstrained LS estimator.

An estimator x̂ is said superefficient or LS-dominating if its
MSE does not exceed the MSE of the LS estimator, i.e.

E
[

(x− x̂)(x− x̂)T
]

≤ ΣLS. (4)

To provide MSE improvement, superefficient estimators ex-
ploit some a priori knowledge about the parameters to be
estimated. In the problem under consideration, the a priori
knowledge is the set of constraints which are naturally im-
posed on x. Under the assumption that x is a random vector

with prior Gaussian distribution1, the MAP-s estimate of x

is:

x̂ =
(

C
T
Σ
−1
v C+Σ

−1
)−1 (

C
T
Σ
−1
v r+Σ

−1
x

)

, (5)

where x ∈ R
p and Σ ∈ R

p×p are the mean and covariance
matrix of x, respectively. The main idea here, is to select the

parameters x and Σ, based on the knowledge of the polytope
of constraints S, so as to guarantee the LS-domination prop-
erty (4), ∀ x ∈ S. After some calculations reported in [11],
the LS-domination condition (4) can be rewritten in terms of
Σ and x, as follows:

Σ ≥
1

2

[

(x−x)(x−x)T −ΣLS

]

. (6)

In order to compute the most appropriate parameters x

and Σ, according to the constraint set S, Lemma 1 of [11]
proved for positive definite matrices needs to be extended
for positive semidefinite matrices. This is so because in the
problem under consideration the polytope of constraints S

lies on a hyperplane of dimension (p-1) in the p-dimensional
space.

Lemma 3.1. Let P = P
T ≥ 0 and x ∈ R(P), where R(·)

denotes column space. Then if

P ≥ xx
T
⇐⇒ x

T
P

†
x≤ 1, (7)

where (·)† denotes the Moore-Penrose pseudoinverse.

Proof. It follows directly from the properties of the gen-
eralized Schur complement [15]. According to the Albert
nonnegative conditions [15], for matrices P, C and B with
appropriate dimensions, the following two statements are
equivalent:
i) P≥ 0 and C−B

T
P

†
B ≥ 0 and R(B) ⊂ R(P)

ii) C≥ 0 and P−BC
†
B

T ≥ 0 and R(BT ) ⊂ R(C).
Therefore, if P ≥ 0, C ≥ 0, R(B) ⊂ R(P), and R(BT ) ⊂
R(C), then

P ≥ BC
†
B

T ⇐⇒ C≥ B
T
P

†
B.

Setting B = x and C = 1 completes the proof.

Let ε(c,P) ,
{

x : (x−c)T
P

†(x−c) ≤ 1
}

denote an
ellipsoid of center c and P is a symmetric positive semidef-
inite matrix. Lemma 3.1 suggests that matrix (P−xx

T ) is
positive semidefinite if and only if every point x belongs to
the ellipsoid ε(0,P). By setting

P , 2Σ+ΣLS, (8)

1A different prior distribution for x could also be adopted, leading to a
different estimation approach [14].



Lemma 3.1 provides a geometrical interpretation of Eq. (6):
an MSE improvement over the LS estimator is achieved if
and only if the ellipsoid ε(x,P) contains the polytope of con-
straints S.

Capitalizing on this result, it can be shown, as in [11],

that Σ and x must satisfy the following set of linear matrix
inequalities (LMI):

[

2Σ+ΣLS ei −x

(ei −x)T 1

]

≥ 0 i = 1, 2, . . . , p

Σ≥ 0,

(9)

where ei, i = 1, 2, . . . , p are the vertices of the (p − 1)-
simplex, which coinside with the columns of the identity
matrix. The MAP-s estimator can then be summarized as
follows: given S and ΣLS select the parameters x and Σ so
that:

min
x,Σ

det(Σ) subject to (9), (10)

where det(·) denotes the determinant of a matrix.
In geometrical terms, minimization of the determinant of

Σ corresponds to finding the minimum volume ellipsoid con-
taining S. The above minimization criterion does not guaran-
tee the minimum achievable MSE, but gives rise to standard
convex LMI problems that can be solved in polynomial time
[12]. Although the minimization process is based on both

the parameters x and Σ, it has been shown that for sym-
metric constraints the optimal solution is obtained when x is
selected as the center of symmetry of the constraint set.

In the problem of estimating the abundance vectors in a
hyperspectral image, the polytope of constraints is explicitly
defined as a standard (p − 1)-simplex S. It can be shown
that the minimum volume ellipsoid circumscribing S is the
hypersphere ε(x,P), which is defined by

P
† =
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, (11)

while
x = [1/p, 1/p, . . . , 1/p]T , (12)

is selected as the center of the (p-1)-dimensional simplex.
For instance, for p = 3 the minimum volume ellipsoid
ε(x,P) reduces to the disc shown in Fig. 1. Matrix P,
whose Moore-Penrose pseudoinverse is given by (11), is a
singular symmetric positive semidefinite matrix of rank p−1
expressed as follows

P =
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(13)

It should be noted that since x satisfies the constraint (2) and
the elements of each row of P add to zero, x− x̄∈ R(P), as
required by the assumptions of Lemma 3.1.
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Figure 2: Urban HYDICE hyperspectral dataset, band 80.

From (8), (13) and assuming knowledge of ΣLS, Σ can
be written as folows:

Σ =
1

2
(P−ΣLS) (14)

By substituting x and Σ from (12) and (14) in (5), an es-
timate of the abundance vector is directly obtained. These
quantities need to be computed only once and are then used
for the estimation of the abundance vector of each pixel in
the image. It should be noted that due to the form of matrix

P, Σ given by (14) is near to singular. This may seriously

affect the estimate in (5), where the inverse of Σ need to
be computed. To tackle this problem, some kind of regular-

ization can be applied, i.e., the inverse of Σ is computed as

(Σ+δ I)−1, where δ is a small positive constant and I is the
p× p identity matrix.

3.1 Imposing the hard constraints

As described above, the MAP-s estimator assumes that the
vector of abundances has a prior Gaussian distribution, i.e.

x ∼ N (x,Σ), where x, Σ are given by (12) and (14) re-
spectively. Due to this statistical assumption, for some pix-
els in the image, the corresponding abundance vectors may
lie outside the polytope S, violating the hard constraint (3).
However, as it will become clear in the next section, in or-
der to assess the performance of the proposed method for
hyperspectral images, the hard constraints must be somehow
imposed to the estimator. Let xq be an estimated vector vi-
olating (3). The main idea is to replace xq with a new esti-
mation point, by means of projecting xq on the polytope S.
In this way, the projection point will be the closest point to
xq satisfying the constraints of the problem. Unfortunately,
there is no known closed form expression for the projection
of a point on the standard (p-1)-simplex in the p-dimensional
space. In the following we propose an approximate solution,
which is based on the Euclidean distances of xq from the ver-
tices of S. Since the polytope S is convex, any point xp on
a (p-1)-dimensional hypersurface of S can be expressed as a
linear combination of the corresponding p-1 vertices of the
polytope, i.e.

xp = θ1e1 + θ2e2 + . . .+ θp−1ep−1, (15)
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Figure 3: Abundance estimation using quadratic programming techniques
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Figure 4: Abundance estimation using the MAP-s estimator and solving the LMI optimization problem
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Figure 5: Abundance estimation using the closed form expression of the MAP-s estimator

where θi are weight coefficients such that ∑
p−1
i=1 θi = 1 and

θi ≥ 0, i = 1,2, . . . ,p − 1. Apparently, the vertice excluded
in (15) is the one with the largest Euclidean distance from
xq, which without loss of generality is assumed to be ep . Let
d1,d2, . . . ,dp−1 denote the Euclidean distances between xq

and the p-1 remaining vertices of the polytope. Then, the
weight coefficients θi in (15) can be computed according to
the following relation:

θi =
ϕ(di)

p−1

∑
j=1

ϕ(d j)

, i = 1, 2, . . . , p−1, (16)

where ϕ(·) is a properly selected function. Two possible

choices are ϕ(x) = 1/x and ϕ(x) = e1/x. As can be easily
verified, in both cases the weight parameter θi is reversely
proportional to the Euclidean distance di, with the second
choice weighting more heavily closely located vertices.

4. SIMULATIONS

In this section, we use real hyperspectral data to evaluate
the performance of the proposed modified MAP-s estimator,
when compared to the constrained quadratic programming
approach. The data correspond to an urban image scene,
shown in Fig. 2, and have been collected by the Hyperspec-
tral Digital Imagery Collection Experiment (HYDICE) sen-
sor. The sensor works in 210 spectral bands, in the region
from 400 to 2500nm, with a spectral resolution of 10nm. Af-
ter removing the low SNR bands, 162 spectral bands remain
available, i.e. L=162. Four endmembers are present in the
image, namely asphalt, roof, grass and tree. The spectral
signatures of these endmembers have been identified using a
supervised technique, [9], i.e areas in the image which seem
to contain a pure material are used to extract the spectrum of
this material.

So far, it has been assumed that the noise covariance ma-
trix Σv is known. Note that ΣLS used in (14) to compute the

covariance matrix Σ, depends on Σv. As a result, estimation



of the noise covariance matrix of the image is a necessary
preprocessing step of the proposed algorithm, which may af-
fect the overall performance of the estimator. In our simu-
lation experiments, Σv has been computed using the shift-
difference method, as in [16].

In Figs. 3, 4 and 5, the results of three abundance es-
timation methods are depicted. Each figure comprises four
images corresponding to the four endmembers under consid-
eration. A pure black pixel in an image indicates that the
abundance of the respective endmember is zero, while a pure
white pixel represents an abundance value equal to one. All
other abundance values between zero and one are illustrated
according to the different tones of gray. In Fig. 3, a quadratic
programming based technique has been applied to estimate
the abundances. In Figs. 4 and 5, the MAP-s estimator has
been implemented either by solving an LMI problem or by
using directly the closed form expressions derived in this
paper, respectively. We observe that the proposed method
succeeds in discriminating all four endmembers with suffi-
ciently high accuracy. Its performance is similar to that of the
LMI-based approach, as shown by comparing Figs. 4 and 5.
Compared to the convex optimization based method, there is
some degradation in performance, even though the asphalt
endmember seems to be better resolved using the MAP-s
method. Recall, however, that the computational complexity
of the proposed method is much lower, compared to the one
required to numerically solve a convex optimization problem
for each pixel in the hyperspectral image.

5. CONCLUSION

This paper has addressed the problem of abundance estima-
tion in hyperspectral signal unmixing, subject to full additiv-
ity and nonnegativity constraints. Instead of solving numer-
ically this convex optimiztion problem, we have followed a
novel approach stemming from a recently reported MAP es-
timation method. The proposed algorithm has almost simi-
lar performance to the much more computationally demand-
ing numerical method, thus making it especially attractive for
real time processing of hyperspectral data.
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