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ABSTRACT
In this paper a novel efficient online possibilistic c-means

clustering algorithm, called Online Generalized Adaptive

Possibilistic C-Means (O-GAPCM), is presented. The al-

gorithm extends the abilities of the Adaptive Possibilistic

C-Means (APCM) algorithm, allowing the study of cases

where the data form compact and hyper-ellipsoidally shaped

clusters in the feature space. In addition, the algorithm

performs online processing, that is the data vectors are

processed one-by-one and their impact is memorized to

suitably defined parameters. It also embodies new procedures

for creating new clusters and merging existing ones. Thus,

O-GAPCM is able to unravel on its own the number and the

actual hyper-ellipsoidal shape of the physical clusters formed

by the data. Experimental results verify the effectiveness of

O-GAPCM both in terms of accuracy and time efficiency.

Index Terms— possibilistic clustering, online clustering,

parameter adaptivity, hyperspectral imaging

I. INTRODUCTION

Clustering aims at grouping objects to groups (clusters),

so that more “similar” objects are assigned to the same

cluster and less “similar” objects to different clusters, based

on a suitable similarity measure. In clustering, each object

is represented by a set of, say l, features, which form its

associated l-dimensional feature vector, while the set of all

these feature vectors constitute the data set. In the present

work, we consider the case where each cluster is represented

by a single vector called cluster representative, which lies

in the same l-dimensional space with the data and (ideally)

is located at the center of the cluster.

In this paper we deal with cost function optimization
based clustering algorithms. Celebrated algorithms of this

kind are the k-means (hard clustering), e.g. [1], the fuzzy

c-means (FCM - fuzzy clustering), e.g. [2], [3] and the

possibilistic c-means (PCM - possibilistic clustering), e.g.
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[4], [5]. More specifically, we focus on PCM clustering

algorithms, which are iterative and at each iteration they

move the representatives towards their closest regions that

are dense in data points (dense regions), that is, to regions

where significant aggregations of data points (clusters) exist.

In PCMs the cluster representatives are updated, based

on the degrees of compatibility of the data vectors with

the clusters1. In addition, PCM algorithms involve a set of

parameters, one for each cluster, usually denoted by γ, each

one being a measure of the variance of its associated cluster

around its center. The accurate estimation of γ’s is of crucial

importance. Once γ’s have been estimated, they are kept

fixed during the execution of PCM. Therefore, poor estimates

of γ’s are likely to lead to poor clustering performance,

especially in more demanding data sets (e.g. where clusters

are close to each other and/or clusters with significantly

different variances are encountered in the data set).

Recently, a new possibilistic algorithm has been proposed

in [6], called Adaptive Possibilistic C-Means (APCM) that

addresses the above issues of PCMs. Specifically, its main

characteristic is that the parameters γ, after their proper ini-

tialization, are adapted during the execution of the algorithm.

The contribution of this special feature of APCM is twofold.

First, it increases the flexibility of the algorithm in tracking

the variations in the formation of the clusters that occur

from iteration to iteration. Second, it renders APCM capable

to unravel the number of the physical clusters that exist,

provided that APCM starts with a reasonable overestimate

of it. This is achieved through a cluster elimination proce-

dure, which eliminates clusters gradually as the algorithm

evolves, making thus possible the reduction of the initially

overestimated number of clusters towards the true one.

APCM, as a PCM algorithm, is based on the assumption

that the data points form compact and hyper-spherically

shaped clusters. However, in the case of hyper-ellipsoidally

shaped clusters, PCM algorithms including APCM may fail

to capture the shape of the clusters, by classifying incorrectly

the points at the “tails” of the hyper-ellipsoids as shown

Fig. 1. If, in addition, clusters of the above shape have almost

coincident centers but different “orientations” in space, the

above algorithms are very likely to fail in identifying them.

1The degree of compatibility is a measure of “affinity” between a data
vector and a cluster.
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Apart from the above issue, most clustering algorithms

perform batch processing, that is, they process the whole

data set at each iteration before updating their parameters.

This makes them less eligible for processing large sized

and high dimensional data sets, whose number increases

rapidly nowadays. One way to deal with this issue is to

resort to online processing, where parameter updating takes

place after the consideration of each single data vector.

In this paper, we generalize the APCM [6], in order to

handle the general case of hyper-ellipsoidally shaped clusters

in an online manner. The proposed algorithm, named Online

Generalized Adaptive Possibilistic C-Means (O-GAPCM),

(a) is able to identify the centers and the actual “shapes” of

hyper-ellipsoidal clusters in the feature space, (b) is able to

detect the true number of physical clusters, and (c) processes

the data vectors one by one memorizing their impact to

suitably defined parameters. In addition, O-GAPCM has its

own novel mechanisms that allow (i) the creation of new

clusters and (ii) the merging of clusters, as the algorithm

evolves, where necessary. Thus, O-GAPCM starts with a

small number of clusters and creates or merges clusters

dynamically, as data vectors are processed sequentially.

II. THE ONLINE GAPCM (O-GAPCM)
In this section, we describe in detail the proposed Online

Generalized APCM (O-GAPCM) clustering algorithm. Its

associated cost function is,

J(Θ, U) =
t∑

i=1

m∑

j=1

[uijdij +(uij lnuij − uij)] (1)

where dij = (xi − θj)
TβΣ−1

j (xi − θj), xi is the i-th data

vector and θj is the representative of cluster Cj . uij is the

degree of compatiblilty of xi with Cj , m is the number

of clusters and β is a parameter that controls the size of

the variance of the clusters2. Σj is the covariance matrix

associated with cluster Cj and is defined taking into account

only the most compatible points with Cj , as follows:

Σj =

∑
xi:uij= max

r=1,...,m
uir

(xi − μj)(xi − μj)
T

nj
, (2)

where nj is the number of the data points xi that are most

compatible with cluster Cj and

μj =
1

nj

∑
xi:uij= max

r=1,...,m
uir

xi. (3)

Minimizing eq. (1) with respect to uij and θj , we take

uij = exp (−dij) , (4)

θj =

∑N
i=1 uijxi∑N
i=1 uij

. (5)

2Parameter β takes values around 1. See also the discussion for the related
parameter α of APCM algorithm in [6].

In the sequel, we describe the main stages of the O-

GAPCM algorithm, where the above updating parameter

equations will be given in a recursive form thus complying

online processing concept.

II-A. Parameter initialization
In the initialization phase of O-GAPCM, we run the batch

APCM on a small sample of, say K, data points (e.g. K =
100), starting with an overestimated number of the physical

clusters, mini. After its convergence, APCM ends up with

m (≤ mini) clusters and the resulting θj’s and γj’s3, are

used for the initialization of O-GAPCM. Specifically, Σj’s

of all initial clusters Cj’s are initialized as Σj = γjIl, where

Il is the l × l identity matrix. From now on, the sequential

processing of the remaining data vectors is enabled.

II-B. Parameter adaptation
This part is executed upon the arrival of the data vector

xt at the t-th iteration and includes (a) the computation of

the degree of compatibility utj , j = 1, . . . ,m(t − 1) of xt

with all created up to now clusters and the adaptation of

all cluster representatives θj’s, j = 1, . . . ,m(t − 1), taking

into consideration only the corresponding utj’s, and (b) the

adaptation of the parameters Σr and μr of the cluster Cr,

with utr = maxj=1,...,m(t−1) utj , i.e. of the most compatible
cluster, Cr, to data point xt.

Taking into account eq. (4), we have

utj = exp
[−(xt − θj(t))

TβΣ−1
j (t)(xt − θj(t))

]
. (6)

In addition, the time recursive equation for θj(t), resulting

from eq. (5) is

θj(t) =

(
1− utj

Uj(t)

)
θj(t− 1) +

utj

Uj(t)
xt, (7)

where Uj(t) = Uj(t − 1) + utj , j = 1, . . . ,m(t − 1), is

the summation of the degrees of compatibility of the data

vectors processed so far with Cj . Note that all θj’s are

updated, during the processing of the current data point xt.

However, this is not the case with the parameters μj and

Σj of the clusters. Specifically, if utr is above a certain

threshold, thres (e.g. thres = 1e− 05), which implies that

xt is not “very far” from the currently available clusters so

that to create a new cluster, only the parameters μr and

Σr of the most compatible to xt cluster, Cr, are updated.

Defining Itj = 0, j �= r and Itr = 1, we can easily get from

eqs. (2), (3), the following time-recursive formulas:

Σj(t) =

(
1− Itj

Sj(t)

)
Σj(t− 1) +

Itj

Sj(t)
(xt − μj(t))(xt − μj(t))

T ,

(8)

μj(t) =

(
1− Itj

Sj(t)

)
μj(t− 1) +

Itj
Sj(t)

xt, (9)

3Since APCM returns hyper-spherically shaped clusters, a certain γj
accounts for the variance of the points of Cj around θj .
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where Sj(t) = Sj(t − 1) + Itj , is the number of most

compatible to Cj data vectors processed so far.

II-C. Cluster creation

Let us now comment on the mechanism that creates new

clusters, as the algorithm evolves. This procedure is activated

when utr is less than thres. In this case, a new cluster

is created, containing only xt. Its corresponding parameters

θ, μ are set equal to xt, its parameters U , S are set to

1, while its parameter Σ is set equal to Σq , where q =

arg min
j=1,...,m(t)

∏l
k=1

√
rkj , where rkj is the k-th eigenvalue

of Σj/β. That is, Σ is set equal to Σq , corresponding to the

smallest sized cluster Cq . Finally, the number of clusters is

increased by one.

II-D. Cluster merging

In online clustering schemes, the clustering result is

dependent on the order in which the data are processed.

As a consequence, several clusters might be created, which

nevertheless represent parts of the same physical cluster.

Therefore, a mechanism that identifies and merges such clus-

ters should be incorporated in an online clustering algorithm.

To this end, every T iterations (e.g. T = 100), O-GAPCM

considers all pairs of clusters and checks whether a cluster

Cs lies entirely inside cluster Ck. If this is the case, these

two clusters are merged into one cluster and the parameters

of the new cluster are defined as follows:

θnew =
Us

Us + Uk
θs +

Uk

Us + Uk
θk (10)

μnew =
Ss

Ss + Sk
μs +

Sk

Ss + Sk
μk (11)

Σnew =
Ss

Ss + Sk
Σs +

Sk

Ss + Sk
Σk (12)

Unew = Us + Uk (13) Snew = Ss + Sk (14)

In order to check whether a Cs lies inside Ck, we act as

follows. First we check if θs, lies inside the hyper-ellipsoid

of cluster Ck, i.e. (θs − θk)
TβΣ−1

k (θs − θk) ≤ c, where

c = (χ2
l )q results from the Chi-Square distribution with l-

degrees of freedom and defines the boundary of the hyper-

ellipsoid centered at θk that contains the most compatible to

Ck data points, with confidence q. In our experiments, we

chose q ≥ 0.95. If this is the case, we find the 2l extreme

data points4, say pi, i = 1, ..., 2l of hyper-ellipsoid Cs and

we check if all of them lie inside the hyper-ellipsoid of Ck,

i.e., max
i=1,...,2l

[
(pi − θk)

TβΣ−1
k (pi − θk)

] ≤ c. If the latter

4These are the points of the hyper-ellipsoid (x−θs)T βΣ−1
s (x−θs) = c

lying on its principal directions (2 points per direction).

holds, clusters Cs and Ck are merged into one as described

above. The O-GAPCM in algorithmic form is given below.

Algorithm 1 [Θ, Σ, label5] = O-GAPCM(X , mini, β)

Input: X , mini, β
1: t = 0

� Initialization
2: K = 100, thres = 1e− 05 and T = 100
3: [Θ(t),Γ(t),m(t), label]=APCM(X(:, 1 : K),mini, α

6)

4: Set: Σj(t) = γj(t)Il, j = 1, ...,m(t)
5: Set: Uj(t) = 1 and Sj(t) = 1, j = 1, . . . ,m(t)
6: while t+K < DataSize do
7: t = t+ 1
8: xt = X(:, t+K)
9: utj = exp[−(xt − θj(t − 1))TβΣ−1

j (t − 1)(xt −
θj(t− 1))], j = 1, . . . ,m(t− 1)

� Update cluster representatives
10: Uj(t) = Uj(t− 1) + utj , j = 1, . . . ,m(t− 1)

11: θj(t) =
(
1− utj

Uj(t)

)
θj(t− 1) +

utj

Uj(t)
xt, ∀j

12: Determine: utr = maxj=1,...,m(t−1) utj

13: if utr < thres then
� Create a new cluster
14: m(t) = m(t− 1) + 1
15: θm(t)(t) = xt

16: μm(t)(t) = xt

17: Determine: q = arg min
j=1,...,m(t)

l∏
k=1

√
rkj

18: Σm(t)(t) = Σq

19: Um(t)(t) = 1 and Sm(t)(t) = 1
20: label(t+K) = m(t)
21: Set: Itj = 0, j = 1, . . . ,m(t)
22: else
� Update parameters of cluster Cr

23: m(t) = m(t− 1)
24: label(t+K) = r
25: Set: Itj = 0, ∀j �= r and Itr = 1
26: end if
27: Sj(t) = Sj(t− 1) + Itj , j = 1, . . . ,m(t)

28: μj(t) =
(
1− Itj

Sj(t)

)
μj(t− 1) +

Itj
Sj(t)

xt, ∀j
29: Σj(t) =

(
1− Itj

Sj(t)

)
Σj(t − 1) +

Itj
Sj(t)

(xt −
μj(t))(xt − μj(t))

T , ∀j
� Every T iterations perform the clusters merging procedure
30: end while
31: return Θ, Σ = {Σ1, . . . ,Σm}, label

III. EXPERIMENTAL RESULTS
In this section we assess the performance of O-GAPCM

by comparing it with (a) the batch clustering algorithms k-

5The vector label contains the indexes of the cluster that data vectors
are assigned.

6The APCM is executed for a large value of its parameter α, e.g., α = 10,
which leads to smaller values for γj ’s. Such values are preferred for the
initialization phase of O-GAPCM, in order to avoid clusters having “large”
γj ’s, which may extend over more than one physical clusters (see also [6]).

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2648



means [1], PCM [5], APCM [6] and the batch version of O-

GAPCM, called GAPCM algorithm [7], and (b) the online

clustering algorithms, online k-means (O-kmeans) [8] and

online APCM (O-APCM) [9], on the basis of both simulated

and real cases. In order to evaluate the clustering results,

we use the Success Rate (SR) criterion, which measures the

percentage of the points that have been correctly labeled by

each algorithm. Finally, the times (in seconds) required for

the convergence of each algorithm, are also provided7.
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(e) GAPCM (β = 1)
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(h) O-GAPCM (β = 0.3, q = 0.995)

Fig. 1. Clustering results on Experiment 1.

Experiment 1: Consider a two-dimensional data set con-

sisting of N = 14000 points, which form four physical

clusters C1, C2, C3 and C4 (Fig. 1a). Each cluster is

modelled by a normal distribution. The means of the dis-

tributions are c1 = c2 = [−10, 80]T , c3 = [−10, 40]T and

7All the experiments have been conducted on a workstation of Intel i7-
4790 with 16 GB RAM and 3.60 GHz.

c4 = [30, 80]T respectively, while their covariance matrices

are Σ1 =

[
100 10
10 2

]
, Σ2 =

[
50 −100

−100 225

]
, Σ3 =[

100 −10
−10 2

]
, and Σ4 =

[
50 100
100 225

]
, respectively. A

number of 2000 points are generated by the first and the

third distributions and 5000 points are generated by each of

the other two distributions. Note that the centers of C1 and

C2 coincide and the “tails” of C2, C3 and C4 are partially

overlapped. In Table I and Fig. 1, the best clustering results

obtained by each algorithm are shown, with its parameters

chosen as stated in the figure caption.

Table I. Clustering algorithms performance on Experiment 1
mini mfinal SR (%) T ime (s)

k-means 4 4 62.86 0.32

PCM 10 2 70.06 3.57

APCM 10 3 81.16 1.51

GAPCM 10 4 96.17 88.89
O-kmeans 4 4 69.70 0.23

O-APCM 10 3 77.84 0.76

O-GAPCM 10 4 95.99 1.23

As it can be deduced, even when the k-means is initialized

with the actual number of clusters (m = 4), it fails to

distinguish cluster C1 from C2, due to their coincident

centers, thus splitting physical cluster C4 to two clusters.

The classical PCM identifies only two actual centers, merg-

ing C1, C2 and C3 in one cluster. The APCM algorithm

identifies the centers of the three out of the four clusters,

failing in distinguishing the clusters with the coincident

centers (C1 and C2). In addition, it fails to unravel the

real “shape” of the identified clusters. On the other hand,

batch GAPCM produces very accurate results, identifying

correctly all physical clusters, however, it is the slowest

algorithm among all. O-kmeans is a little bit faster than

k-means, however, it cannot distinguish cluster C1 and it

splits the physical cluster C2 into two clusters. Moreover, O-

APCM is also slightly faster than APCM, but it still cannot

identify cluster C1 and also fails to unravel the real “shape”

of the identified clusters. Finally, O-GAPCM is much more

computationally efficient than its batch version, GAPCM,

without any remarkable degradation on its performance.

Experiment 2: We test now the proposed O-GAPCM on

a real hyperspectral image (HSI), which depicts a subscene

of size 220 × 120 of the flightline acquired by the AVIRIS

sensor over Salinas Valley, California [10]. The AVIRIS

sensor generates 224 spectral bands across the range from

0.2 to 2.4 μm. The number of bands is reduced to 204

by removing 20 water absorption bands. The aim here is

to identify spectrally homogeneous regions in the Salinas

HSI. A total size of N = 26400 samples-pixels are used,

stemming from 7 ground-truth classes: “Grapes”, “Broccoli”,

three types of “Fallow”, “Stubble” and “Celery”, denoted by

different colors in Fig. 2a. Note that there is no available

ground truth information for the dark blue pixels in Fig. 2a.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2649



In the sequel, we apply the principal component analysis

(PCA) and we keep the first 3 significant components; thus,

in our experiment l = 3. Note also that Fig. 2 depicts the

best mapping obtained by each algorithm (results are shown

in Table II).

Grapes Broccoli Fallow 1 Fallow 2 Fallow 3 Stubble Celery

(a) The ground
truth

(b) k-means (c) PCM (d) APCM
(α = 0.8)

(e) GAPCM
(β = 1.5)

(f) O-kmeans
(z = 0.05)

(g) O-APCM
(α = 0.2)

(h) O-GAPCM
(β = 0.2, q =
0.995)

Fig. 2. Clustering results on Salinas HSI.

Table II. Clustering algorithms performance on Salinas HSI.
mini mfinal SR (%) T ime (s)

k-means 7 7 65.69 1.02

PCM 15 5 81.32 6.06

APCM 15 7 88.07 5.10

GAPCM 15 7 93.24 630.10
O-kmeans 7 7 81.43 0.28

O-APCM 15 7 85.55 0.96

O-GAPCM 15 7 94.49 2.93

As it is depicted in Fig. 2, even when k-means is initialized

with the actual number of clusters (mini = 7), it splits

each of the classes “Stubble” and “Celery” into two clusters

and merges the “Fallow 1”, “Fallow 2” and “Fallow 3”

classes. The PCM algorithm fails to uncover more than 5

discrete clusters, merging the three different types of the

“Fallow” class. APCM and GAPCM manage to distinguish

“Fallow 1” from “Fallow 3” class, identifying all underlying

clusters. However, GAPCM achieves significantly higher SR
than APCM, which implies that it unravels much better

the actual “shape” of the clusters in the feature space.

This is also reflected in Figs. 2d, 2e, where the APCM

clustering result exhibits more “pixeling” in certain types

of land cover, compared to that of GAPCM, where the

result is “smoother”. On the other hand, GAPCM is more

computationally demanding algorithm than APCM. As far

as the online algorithms are concerned, both O-kmeans and

O-APCM fail in distinguishing “Fallow 1” from “Fallow

3” class. Finally, O-GAPCM manages to detect all clus-

ters, achieving the highest SR amongst all. Furthermore,

compared to the GAPCM, O-GAPCM is significantly more

computationally efficient.

IV. CONCLUSION
In this paper an online generalized possibilistic c-means

clustering algorithm, called Online Generalized Adaptive

Possibilistic C-Means (O-GAPCM), is proposed. Based on

APCM and extending its abilities, O-GAPCM is also able

to unravel hyper-ellipsoidally shaped clusters performing on-

line processing, which makes it very computational efficient.

Experimental results show that O-GAPCM exhibits the best

compromise between accuracy and time efficiency, compared

to other related algorithms. The application of O-GAPCM to

non-stationary environments is a subject of current research.
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