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ABSTRACT

In this paper a novel approach for semi-supervised hyperspec-
tral unmixing is presented. First, it is shown that this problem in-
herently accepts a sparse solution. Then, based on this observation,
an efficient ℓ1 regularized least squares algorithm is proposed, in
which the constraints that are naturally imposed to the problem, are
suitably incorporated. Simulations results show that the proposed
method achieves the performance of quadratic programming based
techniques with much lower computational requirements.

Index Terms— hyperspectral remote sensing, linear spectral
unmixing, subset selection, sparse representation

1. INTRODUCTION

Hyperspectral remote sensing has gained considerable attention in
recent years, due to its wide range of applications, such as environ-
mental monitoring and terrain classification [1]. Hyperspectral sen-
sors have the ability to collect data in hundreds of adjacent spectral
bands. However, due to their low spatial resolution, more than one
different materials’ spectra may be mixed into each individual pixel.
Identification of the materials present in mixed pixels can be done
through Spectral Unmixing (SU). According to this procedure, the
measured spectrum of a mixed pixel is decomposed into a collection
of constituent spectra, called endmembers, and a set of correspond-
ing fractions, called abundances, that indicate the proportion of each
endmember present in the pixel.

Spectral unmixing can be categorized as supervised, unsuper-
vised and semi-supervised. In supervised SU [2], it is assumed that
the knowledge of the endmembers’ spectral signatures contributing
to a pixel is given a priori. On the contrary, in unsupervised SU, [3]-
[4], the endmembers’ spectra are estimated directly from the data.
Finally, semi-supervised SU [5] assumes that a spectral library is
given, containing multiple endmembers’ spectral signatures. The
objective in the later case, is (a) to determine how many and which
endmembers are present in the mixed pixel under study and (b) to
use the selected endmembers to estimate the corresponding abun-
dance fractions. Two constraints that the abundance factions should
satisfy in order to remain physically meaningful are that they (a)
should be nonnegative and (b) sum to one.

In this paper a novel approach for semi-supervised SU in hyper-
spectral images is presented. The approach is based on a properly
modified weighted ℓ1-regularized least squares algorithm. The mo-
tivation of using the sparsity promoting ℓ1 norm is that in practice,
only a small number of the available endmembers are present in each
pixel. Based on this observation, a weighted version [6] of the cel-
ebrated least absolute shrinkage and selection operator (lasso) cite-
rion [7] is utilized, where weights are used for penalizing different
coefficients in the ℓ1-regularization scheme. To efficiently solve the

ℓ1 minimization problem, the Least Angle Regression (LARS) algo-
rithm [8] is used. However, the ℓ1 minimization criterion contradicts
the additivity constraint of the problem, resulting in degradation of
estimation performance. To tackle this effect, the additivity con-
straint is suitably incorporated into the minimization problem, result-
ing in a modified cost function. As verified by simulations for both
real and simulated hyperspectral data, with this modification the pro-
posed method achieves the performance expected by quadratic pro-
gramming methods, at a much lower computational cost. It should
be mentioned that a similar approach to the SU problem has been re-
cently presented in [9]. Note, though, that not only the iterative algo-
rithm utilized in [9], but also the way the constraints of the problem
are exploited, are quite different compared to those in the current
work.

2. PROBLEM FORMULATION

In a hyperspectral image, each pixel is represented by a 𝐿- dimen-
sional vector y, where 𝐿 is the number of available spectral bands.
The elements of y correspond to the reflectance energy measured at
the respective spectral bands. In this work, we concentrate on the
linear mixing model, which is most commonly used for SU. This
model assumes that the received pixel’s spectrum is generated by a
linear combination of endmembers’ spectra. Suppose that we pos-
sess the spectral signatures of 𝑝 materials that may exist in the image.
These spectral signatures either come from a spectral library or can
be obtained from pure pixels of the image. Then, y can be described
by the following linear regression model:

y = Φx+ n, (1)

where Φ =
[
𝝓1 𝝓2 . . . 𝝓𝑝

] ∈ ℝ
𝐿×𝑝
+ , with 𝐿 ≫ 𝑝, is the mix-

ing matrix containing the endmembers’ spectra, x is a 𝑝 × 1 vector
with the corresponding abundance fractions, and n is an 𝐿 × 1 ad-
ditive noise vector. Naturally, x has a sparse form since only a small
number of materials coexist in each pixel.

Due to physical considerations, the fraction vector x satisfies
two constraints, (a) the full additivity constraint:

1𝑇x =

𝑝∑
𝑖=1

𝑥𝑖 = 1, (2)

where 1 is a 𝑝-dimensional vector of ones and (⋅ )𝑇 denotes transpo-
sition, and (b) the nonnegativity constraint:

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, 2, . . . , 𝑝. (3)

In geometrical terms, it is easily seen that the constraints define the
𝑝 − 1 standard simplex in the 𝑝 - dimensional space, denoted by 𝕊.
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We can write

x ∈ 𝕊, 𝕊 =

{
𝑥 ∈ ℝ

𝑝 ∣
𝑝∑

𝑖=1

𝑥𝑖 = 1, 𝑥𝑖 ≥ 0, ∀𝑖
}
. (4)

As mentioned above, x is sparse, that is the cardinality 𝜉 =
∣𝒮(x)∣ of its support

𝒮(x) = {𝑖 ∈ {1 . . . 𝑝} ∣𝑥𝑖 ∕= 0} (5)

satisfies 𝜉 < 𝑝. In the following, the sparsity of x is exploited,
in order to determine the 𝜉 endmembers which are present in the
pixel under study, and then to estimate the corresponding abundance
fractions, subject to the constraints.

3. PROPOSED METHOD

Given the observation model (1) and the polytope of constraints 𝕊,
the sparse solution follows from the optimization problem

min
x∈𝕊

∥x∥0 subject to ∥y −Φx∥22 ≤ 𝜖, (6)

where ∥x∥0 is the number of nonzero 𝑥𝑖’s and 𝜖 is a small positive
parameter. This problem is nonconvex and its solution requires an
exhaustive combinatorial search. To alleviate this difficulty, the ℓ0
norm in (6) can be replaced by the ℓ1 norm [7], i.e.

min
x∈𝕊

∥x∥1 subject to ∥y −Φx∥22 ≤ 𝜖, (7)

where ∥x∥1 =
∑𝑝

𝑖=1 ∣𝑥𝑖∣. The ℓ1 penalization criterion associated
with (7), also called the lasso [7], is

𝒥lasso = ∥y −Φx∥22 + 𝜆𝛼

𝑝∑
𝑖=1

∣𝑥𝑖∣ , (8)

where 𝜆𝛼 is a nonnegative parameter that balances the sparsity of
the solution with estimation accuracy. Minimization of 𝒥lasso subject
to x ∈ 𝕊 will give the lasso solution, xlasso, which is used simultane-
ously for endmember selection and abundance estimation.

However, in eq. (8) all 𝑥𝑖’s are equally penalized in the ℓ1
penalty term. As shown in [6], this setup can lead to inconsistent
endmember selection. To face this problem, different weights can
be assigned to different 𝑥𝑖’s. This gives rise to the weighted lasso
formulation, [6],

xwlasso = 𝑎𝑟𝑔min
x∈𝕊

𝒥wlasso︷ ︸︸ ︷{
∥y −Φx∥22 + 𝜆𝛼

𝑝∑
𝑖=1

𝑤𝑖∣𝑥𝑖∣
}
, (9)

where w = [𝑤1 𝑤2 . . . 𝑤𝑝]
𝑇

is a weighting vector. A desirable
property of the weights 𝑤𝑖’s is to be inversely proportional to their
corresponding 𝑥𝑖’s, i.e. 𝑤𝑖 = 1/ ∣𝑥𝑖∣. Penalizing the nonzero el-
ements of x using small weights, and the zero entries of x using
very large weights, simply forces the solution xwlasso to concentrate
on the elements where x is nonzero. Since x is not known, a pos-
sible choice, among others, is to use the least squares estimator of
x, xls = [𝑥ls,1 𝑥ls,2 . . . 𝑥ls,𝑝]

𝑇
, as proposed in [6]. For 𝛾 ≥ 0, the

weights 𝑤𝑖 can be selected as

𝑤𝑖 =
1

∣𝑥ls,𝑖∣𝛾 , 𝑖 = 1, 2, . . . , 𝑝. (10)

Note that (9) is a quadratic programming problem and can be solved
using iterative techniques, such as interior point methods. However,
these methods are computationally expensive, rendering their use
prohibitive for demanding real-time applications, such as the hyper-
spectral unmixing problem considered here.

3.1. Enforcing the constraints

As mentioned in Section 2, the sum-to-one and nonnegativity con-
straints are physically imposed to the hyperspectral unmixing prob-
lem. As far as the sum-to-one constraint is concerned, we propose
to incorporate it directly to the optimization problem, by substituting
the ℓ2 norm of eq. (9), with the ℓ2 norm of an augmented problem,
as shown below:

x̂ = 𝑎𝑟𝑔min
x∈𝕊

{∥∥∥∥
[
y
𝜆𝛽

]
−

[
Φ

𝜆𝛽1
𝑇

]
x

∥∥∥∥2

2

+ 𝜆𝛼

𝑝∑
𝑖=1

𝑤𝑖∣𝑥𝑖∣
}
, (11)

where 𝜆𝛽 is a regularization parameter [10]. Geometrically, param-
eter 𝜆𝛽 determines how close the solution will lie to the hyperplane
of the constraint 1𝑇x = 1. Note that in practice, the additivity con-
straint is enforced for large values of 𝜆𝛽 .

In addition, the nonnegativity constraint can be imposed using a
modified version of the LARS algorithm, [8], as shown in Algorithm
1 presented below.

Algorithm 1. The positivity constrained lasso.
Let 𝒜 denote a subset of the indices {1, 2, . . . , 𝑝}, and let �̂�𝒜 =

Φx̂𝒜 be a prediction vector of the regression coefficients x̂𝒜.

1. Initialize x̂𝒜 = 0, �̂�𝒜 = 0 and 𝒜 = ∅.
2. Compute the vector of current correlations ĉ = Φ𝑇 (y−�̂�𝒜).

3. Select 𝑗 with the highest correlation, 𝐶 = max
𝑗

{𝑐𝑗} and set

𝒜 = 𝒜 ∪ {𝑗 : 𝑐𝑗 = 𝐶}.
4. Compute:

Φ𝒜 =
(
. . .𝝓𝑗 . . .

)
𝑗∈𝒜

G𝒜 = Φ𝑇
𝒜Φ𝒜

𝐴𝒜 =
(
1𝑇G−1

𝒜 1
)− 1

2

u𝒜 = Φ𝒜w𝒜, where w𝒜 = 𝐴𝒜G−1
𝒜 1 and

𝜶 ≡ [𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑝]
𝑇 = Φ𝑇u𝒜.

5. Define the 𝑝-dimensional vector d, whose 𝒜𝑗-th entry equals
𝑤𝑗 for 𝑗 = 1, 2, . . . , ∣𝒜∣, while all other entries are zero (𝒜𝑗

denotes the 𝑗-th element while ∣𝒜∣ the cardinality of 𝒜).
6. (a) Set 𝛾 = min𝑗∈𝒜

{
max

{−�̂�𝒜𝑗/𝑑𝑗 , 0
}}

and let �̃� denote
the position where the minimum occurs.

(b) Set 𝛾 = min𝑗∈𝒜𝐶

{
max

{
�̂�−𝑐𝑗

𝐴𝒜−𝛼𝑗
, 0
}}

, where 𝒜𝐶 de-

notes the complementary set of 𝒜.
7. If 𝛾 < 𝛾 stop the ongoing LARS step and remove �̃� from 𝒜,

i.e. x̂𝒜 = x̂𝒜 + 𝛾d, �̂�𝒜 = �̂�𝒜 + 𝛾u𝒜 and 𝒜 = 𝒜− {�̃�}.
8. Update x̂𝒜 = x̂𝒜 + 𝛾d and �̂�𝒜 = �̂�𝒜 + 𝛾u𝒜.
9. Return to step 2, until a stopping criterion is met.

Algorithm 1 builds up estimates �̂�𝒜 of y in successive steps.
As a result, the ℓ1 norm of the current solution x̂𝒜 increases in each
iteration. The algorithm stops when ∥x̂𝒜∥1 exceeds 1, as implied by
the sum-to-one constraint.

The proposed method is summarized below:

Algorithm 2.

1. Select 𝛾 ≥ 0 and calculate w as in (10).
2. Define 𝝓∗

𝑗 = 𝝓𝑗/𝑤𝑗 , 𝑗 = 1, 2, . . . , 𝑝.
3. Select the parameters 𝜆𝛼 and 𝜆𝛽 .
4. Using Algorithm 1, solve the augmented lasso problem

x̂∗ = 𝑎𝑟𝑔min
x

{∥∥∥∥
[
y
𝜆𝛽

]
−

𝑝∑
𝑖=1

[
𝝓∗

𝑖

𝜆𝛽

]
𝑥𝑖

∥∥∥∥2

2

+ 𝜆𝛼

𝑝∑
𝑖=1

𝑤𝑖∣𝑥𝑖∣
}

.

5. Output �̂�𝑗 = �̂�∗
𝑗/𝑤𝑗 , 𝑗 = 1, 2, . . . , 𝑝
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Fig. 1. Abundance estimation MSE curves versus SNR.

Tuning the parameters 𝛾, 𝜆𝛼 and 𝜆𝛽 of Algorithm 2 is critical.
As already mentioned, 𝜆𝛽 is given a large value (e.g. 𝜆𝛽 = 1000 in
our experiments) so as to enforce the additivity constraint. Though
not obvious, 𝜆𝛼 controls the termination of Algorithm 1. This can
be seen if the conventional lasso is stated as

min
x

∥y −Φx∥22 subject to

𝑝∑
𝑖=1

∣𝑥𝑖∣ ≤ 𝑇. (12)

Stopping Algorithm 1 when ∥x̂𝒜∥1 > 1 sets the parameter 𝑇 . Pa-
rameter 𝛾 reflects our confidence on the least squares estimator xls.
For instance, in high SNRs, xls detects correctly the non-zero ele-
ments of x and 𝛾 can be set equal to one. On the other hand, when
xls fails to detect the nonzero elements of x, 𝛾 can be set to zero.

4. SIMULATION RESULTS

4.1. Simulated data

To test the performance of the proposed method, we simulated a hy-
perspectral image consisting of 105 pixels. Ten endmembers were
selected from the USGS spectral library [11], having 474 spectral
bands. The USGS library contains spectral signatures of various ma-
terials, such as minerals, plants, man-made materials, etc. All pix-
els were produced using exactly three out of ten endmembers. The
abundances follow a Dirichlet(1, 1, . . . , 1) distribution and the ad-
ditive noise is Gaussian, n ∼ 𝒩 (0, 𝜎2I), where 𝜎2 determines the
SNR level. The proposed method is compared to the least squares al-
gorithm (LS), [10], the equality constrained least squares algorithm
(CLS), [10], the weighted lasso without enforcing the additivity con-
straint, (9), and the quadratic programming based technique (QP) of
[12]. The simulation results are shown in Fig. 1, where the mean
squared error (MSE) curves versus the SNR are displayed. In terms
of performance, we observe that the proposed method is equivalent
to the QP method. It should be noted, however, that such an equiv-
alence in performance is achieved with much lower computational
complexity. Moreover, it is easily seen from Fig. 1 that solving the
weighted lasso problem without enforcing the sum-to-one constraint
as in (11) results in significant performance degradation.
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Fig. 2. Real hyperspectral data: HYDICE urban image scene, band
80.

4.2. Unmixing of a HYDICE image

In this section we apply the proposed method on a real hyperspec-
tral image, which depicts an urban image scene, shown in Fig. 2,
and has been collected by the Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) sensor. The image is composed of
210 spectral bands, in the region from 400 to 2500nm, with a spec-
tral resolution of 10nm. After removing the low SNR bands, 162
spectral bands remain available, i.e. 𝐿 = 162. Six endmembers are
present in the image, namely asphalt, metal, dirt, roof, grass, and
tree. The spectral signatures of these endmembers have been identi-
fied using a supervised technique, which utilizes areas in the image
that seem to contain pure materials, in order to extract the spectrum
of each material [1]. The unmixing results are shown in Fig. 3. Due
to space limitations, we show the unmixing results of only three of
the available six endmembers, for each of the three algorithms, (a)
LS, (b) QP and (c) the proposed method. A pure black pixel in an
image indicates that the abundance of the respective endmember is
zero, while a pure white pixel represents an abundance value equal
to one. All other abundance values between zero and one are illus-
trated according to the different tones of gray. Again, we observe
that the unmixing results of the proposed method are in agreement
with the results produced by the quadratic programming technique,
while both methods are clearly superior compared to the LS algo-
rithm.
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