
RANK-REVEALING BLOCK-TERM DECOMPOSITION FOR TENSOR COMPLETION

Athanasios A. Rontogiannis1 Paris V. Giampouras2 Eleftherios Kofidis3

1IAASARS, National Observatory of Athens, 152 36 Penteli, Greece
tronto@noa.gr

2Mathematical Inst. for Data Science, Johns Hopkins University, Baltimore, MD 21218, USA
parisg@jhu.edu

3Dept. of Statistics and Insurance Science, University of Piraeus, 185 34 Piraeus, Greece
kofidis@unipi.gr

ABSTRACT

The so-called block-term decomposition (BTD) tensor model
has been recently receiving increasing attention due to its en-
hanced ability of representing systems and signals that are
composed of blocks of rank higher than one, a scenario en-
countered in numerous and diverse applications. In this paper,
BTD is employed for the completion of a tensor from its par-
tially observed entries. A novel method is proposed, which
is based on the idea of imposing column sparsity jointly on
the BTD factors and in a hierarchical manner. This way the
number of block terms and their ranks can also be estimated,
as the numbers of factor columns of non-negligible magni-
tude. Following a block successive upper bound minimiza-
tion (BSUM) approach with appropriate choice of the surro-
gate majorizing functions is shown to result in an alternat-
ing hierarchical iteratively reweighted least squares (HIRLS)
algorithm, which is fast converging and enjoys high compu-
tational efficiency, as it relies in its iterations on small-sized
sub-problems with closed-form solutions. Simulation results
with both synthetic and real data are reported, which demon-
strate the effectiveness of the proposed scheme.

Index Terms— Block successive upper bound minimiza-
tion (BSUM), block-term tensor decomposition (BTD), com-
pletion, rank, tensor

1. INTRODUCTION

The ubiquity in our big data era of data with (explicitly
or implicitly) multiple dimensions/relations that are often
incomplete and/or uncertain has given rise to numerous
applications of tensor completion [1], such as image and
video in-painting [2], hyperspectral imaging [3], prediction
of multi-dimensional non-stationary wireless channels [4],
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semiconductor manufacturing [5], and computational mate-
rials science [6], to name only a few. Though still lacking
in sufficient theoretical foundations and algorithmic vari-
ety when compared to its matrix-based counterpart, tensor
completion has already a quite rich literature [1], which
includes (among other approaches) methods based on low-
rank decomposition models. In addition to the classical
Canonical Polyadic Decomposition (CPD) and/or Tucker de-
composition [7, 8, 9, 10], less well-known models, such as
t-SVD [11], tensor trains [12] (and tensor rings [2]), and M -
decomposition [13], have been studied in the context of the
completion problem. The model order (e.g., the tensor rank
in CPD) is almost always assumed a-priori known. Excep-
tions include [7, 8] (see [1] for additional references) where
the CPD rank is also estimated in the course of the com-
pletion through an appropriate regularization of the tensor
reconstruction cost function.

The so-called block-term decomposition (BTD) [14] has
been recently receiving increasing attention due to its en-
hanced ability of representing systems and signals that are
composed of blocks of rank higher than one, a scenario en-
countered in numerous and diverse applications (see, e.g.,
[15] and references therein). The most popular BTD model,
namely the rank-(Lr, Lr, 1) decomposition, is defined as
follows for an I × J ×K tensor X :

X =

R∑
r=1

Er ◦ cr, (1)

where Er is an I × J matrix of rank Lr, cr is a nonzero
column K-vector and ◦ denotes outer product. Clearly, Er

can be written as a matrix product ArB
T
r with the matri-

ces Ar =
[
ar1 ar2 · · · arLr

]
∈ CI×Lr and Br =[

br1 br2 · · · brLr

]
∈ CJ×Lr being of full column

rank, Lr. To the best of our knowledge, BTD-based com-
pletion has been so far only studied in [16], in the context of
spectrum cartography, where joint decomposition and com-
pletion accomplish the so-called dis-aggregation task. For
the case of the observed tensor entries being randomly sam-
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pled in a uniform manner, of interest also in this paper, an
I × J ×K tensor Y is completed from its partially observed
version Z , W ∗ Y , where W is a binary sampling tensor
with ones at the observed positions and zeros elsewhere and
∗ is the Hadamard product, by solving

min
A,B,C

f(A,B,C) ,
1

2

∥∥∥∥∥Z −W ∗

(
R∑

r=1

ArB
T
r ◦ cr

)∥∥∥∥∥
2

F
(2)

with respect to (w.r.t.) A ,
[
A1 A2 · · · AR

]
, B ,[

B1 B2 · · · BR

]
, and C ,

[
c1 c2 · · · cR

]
.

In [16], and in order to avoid overfitting, the following regu-
larized version of the problem is considered,

min
A,B,C

f(A,B,C) + λ1‖A‖2F + λ2‖B‖2F + λ3‖C‖2F, (3)

with λi, i = 1, 2, 3 being scaling parameters (finally cho-
sen to be all equal). Exact block coordinate descent (BCD)
is adopted for its solution. The number of block terms, R,
and their ranks, Lr, are assumed known in the algorithm, an
assumption that can be unrealistic in practice and/or require
computationally intensive trial-and-error search.

Recently, joint BTD model selection and computation for
complete tensors was given special attention (see [15] and ref-
erences therein). A new method was developed and reported
in [17, 15], based on the idea of imposing column sparsity
jointly on the factors in a hierarchical manner that matches
the model structure, using `1,2 norm regularization. This al-
lows to also estimate the number of block terms (R) and their
ranks (Lr) as the numbers of factor columns of non-negligible
magnitude [17, 15]. Promising results were obtained with
both synthetic and real data. Analogous ideas are adopted
here to devise a BTD-based completion scheme. Following
a block successive upper bound minimization (BSUM) ap-
proach with appropriate choice of the surrogate majorizing
functions is shown to result in an alternating hierarchical it-
eratively reweighted least squares (HIRLS) algorithm, which
is fast converging and enjoys high computational efficiency,
as it relies in its iterations on small-sized sub-problems with
closed-form solutions. Simulation results with both synthetic
and real data are reported, which demonstrate the effective-
ness of the proposed scheme.

2. PROBLEM STATEMENT

Our aim is to complete a (noisy) I × J ×K randomly sam-
pled tensor Y through its best BTD approximation as in (2),
where the ranks R and Lr, r = 1, 2, . . . , R are considered
a-priori unknown. As suggested by our earlier work [17, 15],
model selection can be effected by adding to the cost of (2)
an `1,2-type regularization term that penalizes high ranks and
perfectly matches the structure of the BTD model.1 Thus, we

1The mixed `1,2 norm of a matrix is defined as the `1 norm of the vector
of the `2 norms of its columns [18].

propose to solve the following modification of (2)

min
A,B,C

f(A,B,C) + λ‖F(A,B,C)‖1,2, (4)

where λ is a regularization parameter and the 2 × R matrix
F(A,B,C) is defined as

F(A,B,C) ,

[
‖G1‖1,2 ‖G2‖1,2 · · · ‖GR‖1,2
‖c1‖2 ‖c2‖2 · · · ‖cR‖2

]
.

(5)
G ,

[
AT BT

]T
is the (I + J) ×

∑R
r=1 Lr matrix

resulting from stacking the factors A and B and Gr ,[
AT

r BT
r

]T
denote its rth (I + J)× Lr block. From (4)

and (5) we see that the proposed penalty term is composed of
two `1,2 norms combined hierarchically. The column sparsity
promoting property of the `1,2 norm [18] is taken advantage
of at two levels. At the upper level, the minimization of the
`1,2 norm of F(A,B,C) favors the elimination of columns
of C and corresponding whole blocks of A and B (via the
minimization of the norms of the cr’s and those of the cor-
responding Gr’s), while, at the lower level, column sparsity
(hence low rank) is imposed on the surviving Ar’s and Br’s
jointly, through the `1,2 norms of the Gr’s. Thus, by over-
estimating the unknown ranks as Rini and Lini and properly
selecting the regularization parameter λ, the actual tensor
structure can be found by the previously described elimina-
tion procedure. An efficient algorithm for (4) that implements
the above idea is presented in the next section.

It will be useful in our development to recall the fac-
torization of the mode unfoldings of a BTD tensor X ,∑R

r=1 ArB
T
r ◦ cr [14]:

XT
(1) = (B�C)AT , PAT, (6)

XT
(2) = (C�A)BT , QBT, (7)

XT
(3) =

[
(A1 �c B1)1L1

· · · (AR �c BR)1LR

]
CT

,SCT, (8)

where � stands for the Khatri-Rao product in its general
(partition-wise) version and �c is its column-wise version.
The all ones column N -vector is denoted by 1N .

3. PROPOSED METHOD

First, we rewrite (4) explicitly w.r.t. the BTD factors, and add
a small positive constant η2 to ensure the smoothness of the
objective function:

min
A,B,C

1

2

∥∥∥∥∥Z −W ∗

(
R∑

r=1

ArB
T
r ◦ cr

)∥∥∥∥∥
2

F

+

λ

R∑
r=1

√√√√( L∑
l=1

√
‖arl‖22 + ‖brl‖22 + η2

)2

+ ‖cr‖22 + η2,

(9)
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where R and L are assumed to be (probably loose) upper
bounds of the ranks. For the non-convex problem (9) we pro-
pose an inexact BCD procedure2, employing a majorization-
minimization solver at each block minimization step. It falls
in the block successive upper bound minimization (BSUM)
framework [20]. In our case, the block variables are the BTD
factors A, B and C, for which appropriate surrogate func-
tions (of the quadratic type [20]) will be defined and succes-
sively minimized.

The objective function of the A sub-problem of (9) can be
expressed at the kth BCD iteration as

fA(A|Bk,Ck) =
1

2

∥∥∥ZT
(1) −WT

(1) ∗ (PkAT)
∥∥∥2
F

+

λ

R∑
r=1

√√√√( L∑
l=1

√
‖arl‖22 + ‖bk

rl‖22 + η2

)2

+ ‖ckr‖22 + η2,

(10)

where the tensors X ,Z and W are seen in their mode-1
unfoldings. To allow this sub-problem to have closed-form
solution for A, we define a local tight upper bound func-
tion of (10) as a rough second-order Taylor approximation of
fA(A|Bk,Ck) around Ak:

gA(A|Ak,Bk,Ck) = fA(Ak|Bk,Ck) + tr{(A−Ak)

∇AfA(Ak|Bk,Ck)}+ 1
2vec(A−Ak)TH̄Akvec(A−Ak),

where vec(·) is the row vectorization operator and the ILR×
ILR approximate Hessian matrix H̄Ak is given by

H̄Ak , II ⊗ (PkTPk + λDk). (11)

As explained below, the choice of an appropriate approximate
Hessian matrix, as in (11), is of crucial importance for the
convergence and complexity of the algorithm. In (11), Dk ,
(Dk

1 ⊗ IL)Dk
2 is a diagonal reweighting matrix composed of

the R × R diagonal matrix Dk
1 and the RL × RL diagonal

matrix Dk
2 . The rth diagonal entry of Dk

1 is

Dk
1(r, r) =( L∑

l=1

√
‖akrl‖22 + ‖bk

rl‖22 + η2

)2

+ ‖ckr‖22 + η2

−1/2

(12)

and the ((r − 1)L+ l)th diagonal entry of Dk
2 is given by

Dk
2((r − 1)L+ l, (r − 1)L+ l) =

(‖akrl‖22 + ‖bk
rl‖22 + η2)−1/2. (13)

Note that Dk
1 and Dk

2 refer to the first and second elimination
steps, respectively, described in the previous section. Mini-
mizing gA yields the following closed-form solution:

Ak+1 = Ak + [(Z(1) −W(1) ∗ (AkPkT))Pk

− λAkDk](PkTPk + λDk)−1. (14)

2The popularity and advantages of the BCD approach to large-scale tensor
decomposition were recently reviewed and highlighted in [19].

Algorithm 1: BTD-HIRLS-TC
Input: Z , λ, Rini, Lini

Output: Completed tensor, Ŷ
Initialize: k = 0, A0,B0,C0

repeat
Compute Dk

1 ,D
k
2 from (12) and (13)

Dk ← (Dk
1 ⊗ IL)Dk

2

Pk ← Bk �Ck

Compute Ak+1 from (14)
Qk ← Ck �Ak

Compute Bk+1 from (15)
Sk ←

[
(Ak

1 �c B
k
1)1L · · · (Ak

R �c B
k
R)1L

]
Compute Ck+1 from (16)
k ← k + 1

until convergence
Ŷ ←

∑R
r=1 A

k
rB

kT
r ◦ ckr

In analogy with (10), the objective function of the B sub-
problem can be written as

fB(B|Ak,Ck) = 1
2

∥∥∥ZT
(2) −WT

(2) ∗ (QkBT)
∥∥∥2
F

+

λ
∑R

r=1

√(∑L
l=1

√
‖akrl‖22 + ‖brl‖22 + η2

)2

+ ‖ckr‖22 + η2,

which involves the mode-2 unfoldings. The majorization
function gB can be defined as above, replacing P by Q. Its
minimization has a unique solution, expressed as

Bk+1 = Bk + [(Z(2) −W(2) ∗ (BkQkT))Qk

− λBkDk](QkTQk + λDk)−1. (15)

The objective and majorization functions w.r.t. C can be anal-
ogously defined and shown to lead to the following closed-
form expression for Ck+1:

Ck+1 = Ck + [(Z(3) −W(3) ∗ (CkSkT))Sk

− λCkDk
1 ](SkTSk + λDk

1)−1, (16)

utilizing the mode-3 unfoldings of the tensors. As expected,
instead of the composite matrix D, only its D1 part appears
in (16), promoting column sparsity for the factor C.

The previous steps give rise to a novel BTD-based ten-
sor completion algorithm, called BTD-HIRLS-TC and sum-
marized in Algorithm 1.3 Working as in [15], one can show
that the basic iteration steps (14), (15), and (16) are in fact
reweighted least squares recursions with a hierarchical struc-
ture, hence the name of the algorithm. BTD-HIRLS-TC is

3In fact, when W is the all ones I × J × K tensor, Algorithm 1 can
be seen to reduce to the recently proposed BTD-HIRLS scheme [17, 15] for
complete tensor rank-(Lr, Lr, 1) modeling.
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based exclusively on computationally cheap matrix-wise op-
erations, a rather uncommon feature of matrix/tensor comple-
tion algorithms, in which matrix factors are usually updated in
a row-wise manner (e.g., [16]). This is due to the form of the
approximate Hessian matrices (cf. (11)) adopted in the def-
initions of the quadratic upper bound functions and renders
the algorithm suitable for large-scale completion problems.
Moreover, the approximate Hessians satisfy the conditions of
Assumption A in [20, Table 3] required for the BSUM con-
vergence, and hence, by virtue of Theorem 1 and Example 1
of [20], every limit point of BTD-HIRLS-TC is a stationary
point of the original objective function (9).

4. SIMULATION RESULTS

In this section, the performance of the proposed algorithm is
evaluated with both synthetic and real data. Note that, by its
construction, it admits a block-pruning mechanism, namely
the Ar,Br blocks that correspond to columns of C with neg-
ligible energy may be removed as the algorithm progresses.
This reduces the computational burden considerably while
also providing estimates of R that improve in the course of
the algorithm.

Consider first 60× 50× 55 real-valued tensors X that are
generated as in (1) and are contaminated by additive noise,
Y = X + σN , where N contains zero-mean, independent
and identically distributed (i.i.d) Gaussian entries of unit vari-
ance and σ is set so that we get a signal-to-noise ratio (SNR),
SNR = 10 log10(‖X‖2F/(σ2‖N ‖2F)), of 15 dB. The entries
of the BTD factors are also sampled from a standard Gaussian
distribution. R is set to 5 while the Lr’s take values randomly
in the range 2–9. The entries of Y that are considered missing
are uniformly sampled at random with a given rate. The al-
gorithm is initialized with random factors and the unknown R
and Lr’s are all overestimated to 10. The relative recovery er-
ror, defined as RE = ‖Ŷ −X‖F/‖X‖F, is used as the figure
of merit. Observe that this also measures the performance of
denoising in addition to that of completion. For the stopping
criterion, we use the relative difference between two consec-
utive REs. The algorithm stops either when this difference
becomes less than 10−5 or a maximum of 200 iterations is
reached. The regularization parameter λ is fine-tuned so that
the minimum RE is attained. The median REs of 10 indepen-
dent runs for each of three different missing rates are plot-
ted in Fig. 1 versus time. Clearly, BTD-HIRLS-TC achieves
a low RE in all cases, while requiring only a few seconds
to converge. Its high computational efficiency should be at-
tributed to its matrix-wise iteration steps that are to be con-
trasted with the row-wise updates in the corresponding algo-
rithm of [16], requiring, in this experiment, more than 7 min
to converge. Moreover, our experience with BTD-HIRLS-
TC shows that it also estimates the model hyper-parameters
R and Lr. Of course, it should be emphasized that the model
selection part is here (compared to our earlier work [15]) more

0 0.5 1 1.5 2 2.5 3 3.5

10
-2

10
0

10
2

Fig. 1. RE of BTD-HIRLS-TC for different missing rates.

(a) Initial false RGB image (b) Noisy incomplete image

(c) Reconstructed image

Fig. 2. Hyperspectral cube completion with BTD-HIRLS-
TC.

challenging given the incompleteness of the tensor. Nonethe-
less, the method’s completion accuracy seems to be rather in-
sensitive to rank over-estimation.

We have also applied BTD-HIRLS-TC in the recovery
of a highly incomplete real hyperspectral image (HSI). As
demonstrated in, e.g., [21], the correlation structure of such
imagery is well described by the BTD model, with R being
the number of the end-members and the Lr’s reflecting the
ranks of the corresponding abundance maps. We consider the
Washington DC Mall AVIRIS image captured at K = 191
contiguous spectral bands in the 0.4 to 2.4 µm region of the
visible and infrared spectrum [22]. The size of the image is
150 × 150 pixels. Fig. 2 shows the RGB false color images
reconstructed from bands (24,64,135) of (a) the original and
(b) its noisy (with Gaussian i.i.d. noise added corresponding
to SNR=15) and 80% incomplete HSI. The result of (denois-
ing and) completion using BTD-HIRLS-TC, with R overesti-
mated to 50 and all Lr’s to 10, is shown in Fig. 2(c), clearly
demonstrating the potential of the proposed scheme in HSI
completion. In this experiment too, the proposed algorithm
has exhibited its efficiency as compared to the corresponding
scheme of [16] which took much more time to realize the task.
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