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ABSTRACT

This paper presents an adaptive exponentially
weighted algorithm for least squares (LS) system
identification. The algorithm updates an inverse
“square root® factor of the input data correlation
matrix, by applying numerically robust orthogonal
Householder itransformations. The scheme avoids,
almost entirely, costly square roots and divisions
(present in other numerically well behaved adaptive
LS schemes) and provides directly the estimates of
the unknown system coefficients. Furthermore, it
offers enhanced parallelism, which leads to efficient
implementations. A square array architecture for
implementing the new algorithm, which comprises
simple operating blocks, is described. The numer-
ically robust behaviour of the algorithm is demon-
strated through simulations.

1. INTRODUCTION

Adaptive least squares algorithms for system iden-
tification [5},[4], are popular due to their fast con-
verging properties and are used in a variety of
applications, such as channel equalization, echo
cancellation, spectral analysis, control, to name
but a few. Among the various efficiency issues,
characterizing the performance of an algorithm,
those of parallelism and numerical robustness are
of particular importance, especially in applications
where medium to long filter lengths are required.
Sometimes it may be preferable to use an algo-
rithm of higher computational complexity, but with
good numerical error properties and high paral-
lelism, since this may allow its implementation with
shorter wordlenghts and fixed point arithmetic on
an array architecture. This has led to the develop-
ment of adaptive algorithms based on numerically
robust orthogonal transformations.

The use of Householder transformations in the LS
framework, has been so far restricted in block type
problems [8],[6). This is a direct consequence of the
nature of a Householder matrix, which is usually
applied to annul block of elements in vectors or ma-
trices [3]. Thus, Householder transformations have
been used either in simple block LS updates (down-
dates) [8) or in block recirsice LS (RLS) schemes [6].
This paper presents an O(p?), RLS algorithm (p be-
ing the order of the system) which springs from an
inverse square root factor of the data correlation
matrix and incorporates numerically robust block
orthogonal Householder transformations. The al-
gorithm updates a square factor, and computes the
filter parameters directly, without involving ma-
trix inversions or backsubstitution steps. The pro-
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Figure 1. System identification problem

posed scheme avoid$ almost entirely divisions and
square roots and employs low cost additions and
multiplications. Furthermore, it exhibits high de-
gree of parallelism, which makes it amenable to effi-
cient implementation. An array architecture is de-
scribed that efficiently implements the new scheme.
This architecture is designed to take full advan-
tage of the algorithm’s parallelism, and it comprises
very simple operating blocks. We must state that
the derived algorithm consists of matrix-vector and
vector-vector operations, which make it suitable
for efficient implementations on vector processors.
Throughout the paper, the algorithm is compared
with the newly proposed scheme of [1] which up-
dates the inverse Cholesky factor of the data corre-
lation matrix via orthogonal Givens rotations.

2. PROBLEM FORMULATION

Figure 1 illustrates the typical system identifica-
tion task, which is our main concern in this paper.
Given an unknown FIR system, excited by an input
signal u(n), we seek the estimates of the p unknown
tap coefficients so that the error between the mea-
sured output of the system y(N) and the output of
an associated model g(N), is minimum in the least
squares sense. That is the sum

eV IP= A" "[y(n) — " (Mu@)F (1)

n=1

to be minimum, where X is the usual forgetting fac-
tor with 0 € A <1, and

eT(N) = [e(1),6(2),...,e(N))]

cT(N)=[er(N),c2(N),...,cp(N)]
u’(n) = [e(n),u(n =1),...,u(n —p+1))
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The quantity n(n) in the figure stands for the mea-
surement noise, It is well known that the LS so-
lution ¢(N) is obtained from the following normal
equations

R(N)e(N) = d(N) (2)

R(N),d(N) are the estimates of the input data cor-
relation matrix and the crosscorrelation vector be-
tween the input and the desired response, respec-
tively. These quantities are recursively updated as
follows (5]

R(N) = AR(N = 1) + u(N)uT(N) @3)

d(N) = Ad(N - 1) + u(N)y(N) 4)

The unknown filter taps ¢(N) can be computed ei-
ther from (2) or by employing the following time
update formula (5]
- e(N)
c(N)—c(N~l)+w(N)5j(N) (5)

In the last equation ¢(N) stands for the a priori LS
error given by

e(N) = y(N) — cT(N - 1)u(N) (6)

and w(N} corresponds to the dual Kalman gain
defined as

R~ (N = 1)u(N)
G o @)

The quantity §(N) can be expressed as follows

w(N) =

§(N) = /14 A-TuT(N)R-'(N - 1)u(N) (8)

In the following sections we develop a “square-root”
algorithm that solves the RLS problem. The pro-
posed algorithm updates and applies a square fac-
tor, a fact which necessitates the nuse of numerically
robust orthogonal Householder transformations.

3. DERIVATION OF THE ALGORITHM

An orthogonal Householder matrix has the follow-
ing special form [3),[8]

T
vV
P=J)e
T _(9)

It is obvious from (9) that matrix P is also symmet-
ric. Householder transformations are often used to

annul block of elements in matrices or vectors by

appropriately selecting the Householder vector v in
(9). More specifically, if x is a nonzero vector and
e; stands for the unit vector with 1 in the s-th po-
sition, then it can be shown [3] that when

v=xx| x| e (10)
then
Px=F]|x] e (11)

Note the sign difference in equations (10} and (11).
It is worth emphasizing that vectors v and x are
identical except for the i-th element. In most cases,
explicit formation of the Householder matrix from
(9) is not required. Instead, we usually aim to take
advantage of the matrice’s special structure, which
is also the case in our analysis.
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8.1. The HRLS algorithm

Let us assume that the p x p matrix A(N) stands
for an arbitrary square root factor of the input data
autocorrelation matrix R(N) for every N, that is

R(N) = AT(N)A(N) (12)
We define the p x 1 vector k(N) as

A~T(N = 1)u(N)
v

and assume that P(N)isa (p+1) x (p+ 1) House
holder matrix which nullifies the first p elements of
the vector [k7(N),1]7. We will show that P(N)
also updates A~7(N — 1) and produces a scaled
version of the dual Kalman gain. Indeed, let us
consider the following expression

k(N) = (13)

ATV2AT(N 1) K(N)
o)
X(N) o ]
(14)
27 (N) —§N)

where X(N) and z(N) are quantities to be identi-
fied. Note that, according to (8) and (13), k(N)
and §(N) are related as follows

§(N) = /1 + KT (N)k(N) (15)

From the definition of the Householder matrix we
see that, in order for P(N) to annihilate k(N) as
in (14), it must be of the form

V(N)VT(N)

VTNV (N) e

P(N)=1I-2

where the Householder vector v(/N) equals to

k(N)
1+6(N) ]

v(N) = l (17)

The selection of the positive sign in the last element
of v(N) aims to prevent from numerical problems,
which can arise by division with a very small nom-
ber in (16). If we now set

2

B(N) = V(NN (18)

then combination of (15) and (17) easily results in

1
) = 5y + 5] g2
Furthermore, (16) is rewritten as
P(N)=1—B(N)W(N)v'(N) (20)

If we now multiply the matrices in both sides of (14)
with their transposes, the orthogonality of P(N)
leads to the following expressions

ATV - 1K(Y) _ w(N)
VAS(NY 8(N)

z(N) = - (21)




For N =1... do,
1. k(N) = X"PA"T(N - 1)u(N);

2. §(N) = /T +kT(N)k(N);
3. B(N) = gmyeercmyys

4. W(N)= A7 (N = )k(N) (= Aw(N));

5. W(N) = A" 2B(N)W(N);

6. ATT(N) =212 4-T(N - 1) - k(N)WT(N);
7. ¢(N) = y(N) - T(N - D)u(N);

8. c(N) = (N - 1) + T (N);

Initialization (Soft-constrained)
¢(0) =0, A~T(0)= ;jzdiag[l,),...,\"""]

Figure 2. The new HRLS algorithm
R™Y(N-1) i wT(N)w(N)

X—l 57 (N) (22)

XT(N)X(N) =

Equation (21) verifies that z(N) is a scaled version
of the dual Kalman gain. Moreover, application of
the well known matrix inversion lemma [4] to (3)
results in

_ w(N)wT(N)

o) ()

RTYN)=AT'RTY(N -1)

From the last two equations it is straightforward
that X(N) = A~T(N).
Combination  of  equations  (13),(15),(19),
(17),(20),(14) (with X(N) = A~T(N) and z(N)
given as in (21)), (6),(5), leads to the algorithm of
figure 2. As mentioned before, explicit formation of
matrix P(N)is not necessary. The soft-constrained
approach [5), is adopted for the algorithm’s initial-
ization. Note that the filter taps are directly com-
puted without the use of matrix inversions or back-
substitution steps. This is also a characteristic of
the inverse QR algorithm, which is based on Givens
rotations and is described in [1]. The complexities
of these two algorithms are shown in table 1, The
complexity of the HRLS algorithm is higher with
respect to additions and slightly higher w.r.t multi-
plications. This was expected since the new scheme
manipulates a square matrix instead of a triangu-
lar one that is the case in [1]. However, note that
the HRLS algorithm avoids almost exclusively divi-
sions and square roots while employing low cost ad-
ditions and multiplications, in a multiply-add fash-
ion, which is desirable for efficient DSP implemen-
tations. On the other hand, the inverse QR scheme
requires O(p) divisions and square roots. The nu-
merical properties of the HRLS algorithm are ex-
pected to be very favorable because of the use of nu-
merical robust Householder reflections. Moreover,
the derived scheme offers enchanced parallelism, as
compared to 1], a notion that is further analysed
in the next section.

4, PARALLEL POTENTIAL OF THE
ALGORITHM

An array architecture for implementing the HRLS
algorithm is depicted in figure 3 (for the case p = 3).
At time N, the square cells of the array store and
update the elements of matrix A=7(N —1) (step 6).
They also perform the inner product computations,
required in the derivation of the vectors k(N) (step

Alg. Add s Mt s D.5/5.%s
IQR | 3p°+0(p) | Zp° +O(p) | 3p+1
HRLS | 3p° + O(p) | 4p° + O(p) 3

Table 1. Comparison of complexities of In-
verse QR [1] and HRLS

1) and W(N) (step 4). The cyclic cells, at the bot-
tom of the array, store and update the filter taps
(step 8) and produce the a priori error e(N) (step
7). The cyclic cells on the right of the array com-
pute 6°(N) and S(N) (steps 2 and 3 of the algo-
rithm). The emboldened cyclic cells simply trans-
form the gain W(N) in the form A~*/28(N)W(N),
while the bottom right cell produces the quantity

—‘/%%)-ﬁ; that is required in the calculation of c¢(N).
The functionality of all the individual cells is shown

in figure 3.

We must note that the elements of both vectors
k(N) and W(N) are generated in parallel. As it is
illustrated in figure 3, the new input vector u(/N) is
applied in parallel to the row cells of A~T(N —1) al-
lowing for the simultaneous calculation of ki(N)’s.
This is accomplished by performing inner product
computations in a left-to-right procedure. The thus
computed vector k(N) concurrently excites the col-
umn cells of A~T(N —1) and is stored there. Then,
the elements of w(N) can be simultaneously pro-
duced as inner products of k(N) with the columns
of ATT(N —1) in a top-to-bottom procedure.

It is worth stating that, different steps of the HRLS
algorithm can be executed in parallel, thus reducing
the overall computation time. More specifically

1. Having computed ¢(N —1)in the previous time
instant, vector k(N) can be calculated in par-
allel with the a priori error e(N) at the bottom
of the array.

2. The computation of W(N) and that of 6*(N)

: on the right of the array, can be simultaneously
performed.

3. All the elements of A~T(N — 1) are simultane-
ously updated according to the formula

ai;(N) = X7 2ai5(N = 1) — ki(N)iy(N)

This can be accomplished in parallel with the
update of the filter taps at the bottom of the

array.
4. The vector A™*/28(N)W(N) in the intermedi-

: &N
ate cells and the quantity 7i—(6°_()ﬂ_j at the bot-
tom right cell can be calculated concurrently.

It is clear from the above discussion that the com-
putation time per time update iteration is that
required for the completion of 2p + 1 multipli-
cations/additions (MADs) and 2 divisions/square
roots. Moreover, il we exploit the inherent pipelin-
ing of inner products, the above measure can be
reduced from (2p + 1) to (2log,p + 1) MADs. In
any case, a substantial improvement is offered w.r.t
the algorithm of [1],[2] where the computation time
per time update corresponds to 8p multiplications,
3p additions, 2p divisions and p square roots. Thus,
a considerable reduction in the throughput rate is
achieved. Moreover, the processing units are of the
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Figure 3. An array architecture that imple-
ments the HRLS algorithm, r = 3~!/?

e
1.

Figure 4. Initial convergence curves

simple multiply-add type, and the number of divi-
sions iz independent of p. In contrast, O(p) dividers
are needed in [2], which is usually not a desirable
feature if VLSI implementation is considered.

5. SIMULATIONS

In order to verify the correctness of the HRLS algo-
rithm a system identification problem is considered.
The unknown FIR system is time invariant of order
8, the SNR is 30dB, the forgetting factor A = 0.98
and the initialization parameter 4 = 0.01. The in-
put signal and the noise are chosen to be Ganssian
white noise processes. In figure 4 two initial conver-
gence curves are overlaid although they are not dis-
tinguished. One corresponds to the HRLS scheme
and the other to the inverse QR algorithm of [1].
The curves are the average of 100 realizations.

In order to validate the performance of the HRLS
algorithm in 2 low precision environment, we imple-
mented the new scheme using floating point arith-
metic with different (decreasing) mantissa lengths.
It was observed that even for very small mantissa
lengths (2 and 3) the algorithm does not diverge,
that is, accumulation of round-off errors does not
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Figure 8. Initial convergence curves for dif-
ferent mantissa lengths

occur. In figure 5, the ensemble average squared
error of the previous example for mantissa lengths
6,8 and 10 is illustrated. It is clear that the squared
error retains an acceptable level even under low pre-
cision conditions.

8. CONCLUSIONS

An adaptive least squares algorithm based on
Householder reflections, was developed in this pa-
per. The new scheme employs low cost additions
and multiplications and computes directly the un-
known coeflicient estimates without the use of back-
substitution. The algorithm’s enhanced parallelism
combiped to its numerically stable behaviour can
lead to efficient implemenation of the new scheme
on parallel architectures with short wordlenghts
and fixed-point arithmetic. The algorithm is fa-
vorably compared to the recently developed inverse
QR scheme (both being square root inverse fac-
torization schemes [7]) in terms of computational
complexity, parallel properties and numerical be-
haviour.
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