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ABSTRACT

Nowadays, many modern imaging applications generate
large-scale and high-dimensional data. In order to efficiently
handle these data, statistical tools amenable to exploiting their
intrisic low-dimensional nature are needed. PCA is a ubiq-
uitous method which has been widely applied in a variety of
applications. However a major shortcoming of PCA is its sen-
sitivity to gross errors - outliers. In light of this, robust PCA
has been recently proposed. Robust PCA accounts for gross
errors by assuming that the data matrix is the superposition of
a low-rank matrix and a sparse matrix. In this work, a matrix
factorization-based formulation of robust PCA which can ef-
ficiently handle large scale data is proposed. Low-rankness is
imposed via a novel low-rank promoting term applied on the
matrix factors, which can be viewed as a weighted version
of the variational form of the nuclear norm. The newly for-
mulated robust PCA problem is addressed via an alternating
iteratively reweighted least squares-type algorithm. Simu-
lated and real data experiments verify the effectiveness of
the proposed algorithm as compared to other state-of-the-art
robust PCA algorithms.

Index Terms— robust PCA, low-rank, matrix factoriza-
tion

1. INTRODUCTION

Robust PCA has been at the heart of several image and video
processing applications in recent years. Among others, it has
been applied in background-foreground video substraction,
image inpainting, face recognition etc. The main premise
of robust PCA as compared to the traditional PCA is to ac-
count for data points that deviate from the adopted model and
thus can be considered as samples that have been corrupted
by gross errors, also known as outliers. Since these entries
are not known beforehand, the robust PCA problem amounts
to simultaneously detecting these entries and then estimate
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the ”true” uncorrupted values, [1].
That said, robust PCA is an inherently ill-posed problem

unless certain assumptions are made. Along these lines, ro-
bust PCA has been widely viewed as the task of decomposing
a data matrix X into the sum of a low-rank matrix L and a
sparse one S. Convex formulations of the problem, [2], came
into the scene for tranforming the problem to a well-posed
one. In [2], it was shown that under certain conditions convex
relaxations can efficiently recover the low-rank matrix pro-
vided that the matrix of the outliers is sparse enough.

Recently, large scale imaging applications necessitate the
development of computational efficient methods for address-
ing the robust PCA problem. In light of this, nonconvex for-
mulations of this problem with the aim to recude the compta-
tional complexity of the resulting algorithms have been pro-
posed. In that framework, matrix factorization based for-
mulations of robust PCA have been recently introduced in
the literature. The main idea of those approaches is to re-
duce the degrees of freedom of the problem by assuming that
the low-rank component can be expressed via the product of
two reduced-size matrices U ∈ Rm×d , V ∈ Rn×d i.e.,
L = UVT . Since in most applications the rank r of L is un-
known a priori, the inner dimension d of the matrix factors U,
V is taken as an overestimate of r i.e., d ≥ r. Then, low-rank
imposing terms are applied, that penalize the rank of UVT .
Among other approaches, the variational form of the nuclear
norm has been adopted in robust PCA. Recently, matrix fac-
torization approaches penalizing the Schatten-p norm of the
factors U, V were also introduced in [3].

In this paper, a novel approach for solving the robust PCA
problem is proposed. Capitalizing on recent matrix factor-
ization based schemes, we put forth a new low-rank impos-
ing term applied on the matrix factors U,V. This term is
in fact a weighted version of the variational form of the nu-
clear norm and encapsulates other approaches upon selecting
appropriate weights. Going one step further we propose the
utilization of a common reweighting matrix for both factors
which induces jointly group-sparsity on the columns of U,
V. In an effort to remain within the reweighting framework, a
reweighted `1 norm is applied on the sparse matrix of outliers.
Next, based on the block successive upper-bound minimiza-
tion framework (BSUM), [4], an efficient alternating itera-
tively reweighted algorithm for solving the newly formulated
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robust PCA problem is derived. Simulated and real experi-
mental results corroborate the effectiveness of the proposed
algorithm as compared to other state-of-the-art robust PCA
algorithms.

2. RELATED WORK

Robust PCA has been formulated in diverse ways in the liter-
ature. It first appeared as an NP-hard problem in [2],

min
L,S

rank(L) + ‖S‖0 subject to X = L+ S, (1)

where {X,L,S} ∈ Rm×n, X denotes the data matrix, L
its low-rank component and S the sparse one containing the
outliers. The NP-hardness of this problem, coming up due to
the combinatorial nature of rank(·) and `0 norm, has sparked
a wealth of computationally tractable altenatives for finding
approximate solutions of (1). Among them, the combination
of the convex envelopes of rank and `0 norm i.e., the nuclear
norm ||·||∗ and the `1 norm ||·||1 have been utilized as follows

min
L,S

‖L‖∗ + ‖S‖1 subject to X = L+ S. (2)

In an effort to overcome inherent shortcomings of the nuclear
norm, i.e., the equal penalization of each singular value re-
gardless of its magnitude, [5], a weighted version of the latter
was introduced. The weighted nuclear norm is based on sim-
ilar premises to those of the weighted version of the `1 norm,
[6], and has been proven to provide significant merits in terms
of data recovery performance. By incorporating the weighted
nuclear norm, the robust PCA minimization problem is ex-
pressed as follows

min
L,S

‖L‖∗,w + ‖S‖1 subject to X = L+ S, (3)

where w = [w1, w2, . . . , wn]
T , wi ≥ 0, i = 1, 2, . . . , n (as-

suming m ≥ n) and ‖L‖∗,w =
∑n
i=1 wiσi(L) is the re-

sulting weighted version of the nuclear norm. As is analyti-
cally shown in [5], the weighted nuclear norm is convex when
wi+1 ≤ wi, i = 1, 2, . . . , n − 1. An interesting case arises
when a reweighted version of this is adopted by defining the
weights as follows

wi =
1

σi(L) + ε
(4)

where ε is a small constant that averts zero values on the de-
nominator. It should be noted, that by setting the wis as given
above, the weighted nuclear norm becomes concave penaliz-
ing more heavily smaller values and less the larger ones. This
scheme brings forth challenging theoretical issues, however
experimental results have shown clear benefits arising by the
use of the reweithted nuclear norm in different applications,
[5]. Along similar research lines, the Schatten-p norm has
been utilized in [7] for generalizing the nuclear norm to the
case that the `p norm with p ∈ [0, 1] is applied on the singu-
lar values. More specifically, in [7], the authors incorporated

also the sparse component (which models the presence of out-
liers) into the formulated optimization problem by using the
`p norm as the data fitting term. That said, robust PCA is now
trasformed to the following optimization problem

min
L
‖L‖pSp + ‖X− L‖qq (5)

with q ∈ [0, 1] and ‖ · ‖Sp denoting the Schatten-p norm.
Recently, low-rank constraints have been incorporated in

the optimization problems via matrix factorization based ap-
proaches. The main premise of this class of methods is the
reduced computational complexity they offer which makes
them amenable to handling large scale data. Assuming a rank-
r matrix L, it is known that there exist matrices U,V so that
L = UVT . In that respect, robust PCA can now be stated
as a nonconvex optimization problem with respect to matri-
ces U,V which can be solved via alternating minimization
strategies see e.g. [8]. However, in many real applications
the rank is not known beforehand. This fact has given rise
to schemes that first assume an overestimate d ≥ r for the
number of columns of U,V. Then, both matrix factors are
suitably penalized so that -ideally- a matrix L of rank-r is
produced from their product. In that framework, the varia-
tional form of the nuclear norm, defined as

‖L‖∗ = min
L=UVT ,U∈Rm×d,V∈Rn×d

1

2

(
‖U‖2F + ‖V‖2F

)
(6)

has been applied. In [9], (6) was incorporated in the robust
PCA problem, as follows,

min
U∈Rm×d,V∈Rn×d

‖X−UVT ‖1 +
λ

2

(
‖U‖2F + ‖V‖2F

)
, (7)

where λ is a low-rank regularization parameter. In (7) the data
fitting term is penalized via the `1 norm in order to take into
account the fact that data have been corrupted by outliers.

More recently two novel matrix factorization based robust
PCA methods were proposed in [3]. The crux of those meth-
ods was the generalization of the variational form of the nu-
clear norm to the case of Schatten-p norms with p ∈ [0, 1] as
follows,

‖L‖pSp
= min

L=UVT ,U∈Rm×d,V∈Rn×d

p2‖U‖p1Sp1
+ p1‖V‖p2Sp2

p1 + p2
(8)

where p = p1p2
p1+p2

. Two special instances arising for {p1 =

1, p2 = 1, p = 1
2} and {p1 = 2, p2 = 1, p = 2

3} were then
utilized for the robust PCA problem. With the aim to remain
to the `p quasi-norm minimization setting, the authors uti-
lized the relevant `p norm for penalizing the sparse compo-
nent, giving thus rise to the two different optimization prob-
lems arising by minimizing two different sums of norms a)
‖L‖

1
2

S 1
2

+ ‖S‖
1
2
1
2

and b) ‖L‖
2
3

S 2
3

+ ‖S‖
2
3
2
3

.

3. PROPOSED PROBLEM FORMULATION

In this paper, capitalizing on the advances that the above-
mentioned matrix factorization based approaches have of-
fered to robust PCA, we propose a novel and generic low-
rank imposing scheme which applies on both matrix factors
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U,V. This scheme can be considered as a weighted version
of the variational form of the nuclear norm and is defined as

h(U,V) = ‖UW
1
2
U‖

2
F + ‖VW

1
2
V‖

2
F . (9)

Due to the relation of the weighted Frobenius norm to the
Schatten-p norm, [10], it can be easily shown that h(U,V)
can be seen as a generalization of (6). Interestingly, the
proposed low-rank imposing term besides (6), it also encom-
passes the recently proposed regularization (8), for specific
matrices WU,WV, [11]. Herein, we focus on a special case
of h(U,V) which arises for a common weighting matrix
W = WU = WV defined as

W = diag
( (
‖u1‖22 + ‖v1‖22 + ε

)p−1
,
(
‖u2‖22 + ‖v2‖22 + ε

)p−1
,

. . . ,
(
‖ud‖22 + ‖vd‖22 + ε

)p−1
)
, (10)

where ui and vi are the ith columns of U and V, respec-
tively and the small positive scalar ε has been included as
in (4). Note that the diagonal matrix W weighs equally the
corresponding columns of the factors U and V. Moreover,
this particular selection of W gives rise to a reweighting-type
scheme since each of the columns u i, v i in (9) is weighted by

a term
(
‖u i‖22 + ‖v i‖22 + ε

) p−1
2 which contains its squared

`2 norm and resembles the matrix factorization analogue of
the reweighted nuclear norm minimization problem described
above. To make it more clear, it can be considered that each
column ui and vi (i = 1, 2, . . . , d) of matrices U,V is
weighted by a wi defined as

wi =
1

(‖u i‖22 + ‖v i‖22 + ε)
1−p
2

. (11)

Using (11), we get
h(U,V) =

d∑
i=1

(
‖u i‖22 + ‖v i‖22 + ε

)p
. (12)

Remark 1: The regularization term of eq. (12) can be actu-
ally viewed as a group sparsity imposing term on the columns[
u i
v i

]
of the concatenated matrix

[
U
V

]
. Specifically, for p = 1

2

it is the `1/`2 norm of this matrix.
In the framework of robust PCA and in an effort to re-

main into the same reweighting philosophy, we propose to
account for the sparse matrix of outliers S by utilizing the
reweighted `1 norm i.e., ‖S‖1,P =

∑m,n
i=1,j=1 pij |sij | where

pij =
1

|sij |+ε .
All in all, robust PCA is now formulated as follows

min
U∈Rm×d,V∈Rn×d,S∈Rm×n

‖X− (UVT + S)‖2F+

λ

d∑
i=1

(
‖ui‖22 + ‖v i‖22 + ε

)p
+ µ‖S‖1,P (13)

where µ is the regularization parameter of the reweighted `1
norm.

4. OPTIMIZATION ALGORITHM

In this section, we aim at deriving an efficient algorithm for
solving (13). Let us focus on the the cost function f(U,V,S)

for p = 1
2 i.e.,

f(U,V,S) =
1

2
‖X− (UVT + S)‖2F

+λ
d∑
i=1

√
‖ui‖22 + ‖v i‖22 + ε+ ‖S‖1,P. (14)

It should be noted that this cost function is nonconvex, and
hence any derived minimization algorithm must be carefully
initialized so as to avoid “bad” local minima. Moreover, the
problem is non-separable (actually this happens for any p ∈
[0, 1]) with respect to U,V. That said, closed form solutions
for U,V are not available rendering a plain alternating mini-
mization scheme not applicable.

To circumvent this difficulty we come up with a block
successive upper bound minimization approach (BSUM),
[4]. The main idea of this approach is to alternatingly up-
date matrices U,V and S by iteratively minimizing local
tight upper-bounds of the cost function. In this frame-
work, at iteration k + 1, matrices U and V are updated
by Uk+1 = arg min

U
l(U|Uk,Vk,Sk) and

Vk+1 = arg min
V

g(V|Uk+1,Vk,Sk) where

l(U|Uk,Vk,Sk) = ‖X− (UVk,T + Sk)‖2F

+λ

d∑
i=1

‖u i‖22 + ‖vki ‖22 + ε√
‖uki ‖22 + ‖vki ‖22 + ε

+ µ‖Sk‖1,P (15)

g(U|Uk+1,Vk,Sk) = ‖X− (Uk+1VT + Sk)‖2F

+λ

d∑
i=1

‖uk+1
i ‖22 + ‖v i‖22 + ε√
‖uk+1

i ‖22 + ‖vki ‖22 + ε
+ µ‖Sk‖1,P. (16)

It can be easily shown that l(U|Uk,Vk,Sk) ≥ f(U,Vk,Sk)
and g(U|Uk+1,Vk,Sk) ≥ f(Uk+1,V,Sk) by using the
arithmetic-geometric mean inequality, [4]. Lastly, matrix S is
updated by solving a minimization problem of the form

Sk+1 = argmin
S
‖(X−Uk+1VT,k+1,)− S‖2F + µ‖S‖1,P. (17)

This problem has a closed form solution, given as

[Sk+1]ij = ST([X−Uk+1VT,k+1]ij ,
µ

|xij − [Uk+1VT,k+1]ij |+ ε
)

(18)

where ST(x, α) = sign(x) × (|x| − a). The resulting algo-
rithm is given in Algorithm 1 and its convergence properties
are summarized in the following Proposition, whose proof is
not provided due to space limitations.
Proposition 1: The sequence of {Uk,Vk,Sk} generated by
Algorithm 1 converges to a stationary point of the cost func-
tion f(U,V,S).
Proof: Convergence to stationary points can be established
using arguments similar to those provided in [11].

5. EXPERIMENTAL RESULTS

In this section, we present simulated and real data experi-
ments that corroborate the efficiency of the proposed Algo-
rithm 1 in addressing the robust PCA problem. In order to
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Algorithm 1: Robust PCA Alternating iteratively reweighted least
squares (RAIRLS) algorithm
Input: X, λ > 0, µ > 0, d
Initialize: k = 0,V0,U0

repeat
D = diag(d), di =

1√
(‖uk

i ‖
2
2+‖v

k
i ‖

2
2+ε)

, i = 1, 2, . . . , d

Uk+1 =
(
X− Sk

)T
Vk

(
VT
kVk + λD

)−1

Vk+1 =
(
X− Sk

)
UT
k+1

(
UT
k+1Uk+1 + λD

)−1

Sk+1 is computed from (18)
k = k + 1

until convergence
Output: Û = Uk+1, V̂ = Vk+1, Ŝ = Sk+1

m=n
RAIRLS (S + L) 1

2
(S + L) 2

3
WNNM

NRE F-M NRE F-M NRE F-M NRE F-M
500 0.052 0.845 0.072 0.840 0.077 0.839 0.058 0.842
1000 0.037 0.848 0.044 0.847 0.047 0.846 0.045 0.846

Table 1. Simulated data - NRE and F-M results.

better highlight the efficiency of the proposed approach we
compare it to three state-of-art algorithms i.e., Weighted Nu-
clear Norm Minimization (WNNM), [12], and the two matrix
factorization based algorithms of [3], namely the (S + L) 1

2

and the (S+L) 2
3

. As performance metrics we utilized the nor-

malized reconstruction error defined as NRE =
‖L−L0‖2F
‖L0‖2F

for
evaluating the recovery of the low-rank component, and the
F-measure, [3], in order to evaluate the recovery of the sparse
component. The proposed algorithm stops when either a max-
imum number of 500 iterations limit is reached or the follow-
ing criterion is satisfied: ‖Û

k+1V̂T,k+1−ÛkV̂T,k‖2F
‖ÛkV̂T,k‖2F

≤ 10−4.
The same stopping rule is followed for the rest algorithms
with their stopping criteria adopted as proposed in the rele-
vant papers, [12], [3]. Finally, the regularization parameters
of the proposed algorithm and its rivals have been fine tuned
(WNNM, (S+L) 2

3
and (S+L) 1

2
where optimized as in [3]).

It should be also noted, that a column pruning mechanism for
the columns that have been zeroed by the proposed RAIRLS
algorithm was adopted, as further explained in [11].
5.1. Simulated data experiment

In this experiment we generate a low-rank matix L0 ∈ Rm×n
of rank r as the product U0V

T
0 of matrices U0 ∈ Rm×r and

V0 ∈ Rn×r whose elements are i.i.d. random samples from
a zero mean and unit variance Gaussian distribution. A sparse
matrix S0 is also generated with support set chosen uniformly
at random and its non-zero entries being uniformly i.i.d. in the
interval [−5, 5]. Data matrix X is also corrupted by addtional

m=n
Average time (sec)

RAIRLS (S + L) 1
2

(S + L) 2
3

WNNM
500 5.66 8.42 4.82 14.92
1000 27.24 44.50 43.50 98.05

Table 2. Simulated data - average time of execution.

(a) (b) (c)
Fig. 1. a) input image b) L0 and c) S0

RAIRLS (L+ S) 1
2

(L+ S) 2
3

WNNM

NRE = 0.009 NRE = 0.0296 NRE = 0.0280 NRE = 0.0809

F-M = 0.9887 F-M = 0.9849 F-M = 0.9841 F-M = 0.9406

Fig. 2. Recoverd low-rank and text images.

Gaussian i.i.d noise of variance σ2 = 0.25. Experiments are
conducted for two different cases m = n = {500, 1000}.
In both cases, the matrix factorization based algorithms are
provided an overestimate d = 20 of the true rank r = 10.
Both experiments are executed for 10 different realizations
and the mean values of the NRE and the F-M for each of the
algorithms is given in Table 1. As it can be seen from Table 1
the proposed RAIRLS presents promising results outperform-
ing its counterparts in terms of both the performance metrics.
Moreover, as shown in Table 2, RAIRLS requires much less
time than the other algorithms in the large scale setting i.e.,
m = n = 1000. This favorable property of RAIRLS results
from the pruning of columns of the matrix factors that have
been zeroed due to the group-sparsity inducing nature of the
proposed low-rank regularization term.

5.2. Real data experiment

Herein, we test the performance of the proposed algorithm to
a low-level vision problem i.e, that of text removal. To this
end, we apply RAIRLS and the other competing algorithms
on the 256 × 256 pixels image of rank r = 10, used in [3],
which is corrupted by outlier noise, which corresponds to text.
The corrupted input image, the low-rank ground truth image
and the text image are given in Fig. 1. All algorithms tak-
ing part in the experiment are initialized to an overestimate of
d = 20 of the true rank r. In Fig. 2, the recovered (by all the
algorithms) low-rank components of the image as well as the
text images are shown. Moreover, as quantitative metrics of
the performance we provide the NRE of the low-rank compo-
nent and the F-M of the text image. The obtained by RAIRLS
results are comparable with those of the state-of-the-art rel-
evants and slightly better when it comes to the NRE, thus
showing the competence of RAIRLS in handling real data.
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