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Abstract - In this paper a new possibilistic clustering algorithm 
is proposed, where certain critical parameters are dynamically ad­
justed, allowing for increased flexibility in uncovering the clustering 
structure of the data. The new algorithm requires only a crude over­
estimation of the number of clusters (instead of the actual number 
of them, as many other well-known algorithms require), and has - in 
principle - the ability to reduce this number to that of the clusters, 
that are naturally formed by the data. In addition, since the pro­
posed clustering algorithm is a possibilistic one, it is expected that 
it will provide dense in data points regions as clusters. Experimen­
tal results, on both synthetic and real data sets, verify the previous 
conclusions. 

Keywords - fuzzy clustering, possibilistic clustering, adaptivity 

1. INTRODUCTION 

Clustering a set of objects into groups has been a well estab­
lished data analysis method in unsupervised pattern recogni­
tion and it has been frequently used in a vast range of applica­
tions during the last decades (e.g. [1] ). The aim in clustering 
is to assign "similar" objects to the same cluster and "dissim­
ilar" objects to different clusters. Among the various cluster­
ing methods, that have been proposed, are the crisp (e.g. [1] ), 
the fuzzy [2] and the possibilistic clustering methods [3] . 

In this work we deal with the popular case where the data 
vectors of the data set under study, X C �R, form compact 
and hyperspherically shaped clusters. The most well known 
algorithms from the above categories that deal with this case 
are the k-means, the fuzzy c-means (FCM) and the possi­
bilistc c-means (PCM), respectively [1] . In all these algo­
rithms each cluster is represented by an l-dimensional cluster 
representative vector. All such algorithms start with some ini­
tial estimates of these vectors and (in principle) they move the 
cluster representatives to regions that are "dense" in data, via 
the optimization of appropriate cost functions. However, their 
philosophical background is quite different. In the k-means, 
each data vector belongs exclusively on a single cluster, while 
in the FCM a single data vector may belong to more than one 
clusters simultaneously, up to a certain degree, under the con­
straint that all these degrees sum up to one. Last, in the PCM 
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the cluster representatives are updated, based on the degree of 

compatibility of a data vector with a given cluster. In contrast 
to the FCM, in this case no sum-to-one constraint is imposed 
on the degrees of compatibility of a data point. It is worth 
noting that given the number of the clusters Tn in the data 
set, both k-means and FCM will terminate returning exactly 
Tn clusters. Thus, if Tn is not the true number of the clusters 
formed naturally by the data points, these algorithms will fail 
to uncover the underlying clustering structure. Specifically, 
if Tn is less than the actual number of clusters, at least some 
representatives will fail to move to dense regions, while in 
the opposite case, some naturally formed clusters will split to 
more than one pieces. However, this is not the case with PCM. 
Indeed, it turns out that if the number of clusters is overesti­
mated, then, in principle, all representatives will be driven to 
"dense regions" by the PCM. However, more than one may 
be moved to the same dense region [4] . 

Although PCM deals well with noisy points and outliers, 
compared to k-means and FCM, whose estimates for the rep­
resentatives are significantly affected by the noise, it requires 
good initialization of both the cluster representatives and the 
'17 parameters that involves. Recall that, [3] , each cluster is 
associated with an '17 parameter which, loosely speaking, is 
a measure of how the influence of a cluster is spread around 
its representative. In practice, T)'S are estimated, based on the 
clustering results obtained by FCM which needs to be exe­
cuted first [3] and are kept fixed during the execution of PCM. 
However, since a prerequisite for the FCM to provide good 
clustering results is the accurate knowledge of the number of 
clusters (which is not the case in practice), the estimates for 
T)'S are (in most cases) not very accurate. Consequently, this 
usually leads PCM to poor results. Some variants of PCM that 
try to address the problems of the original PCM have been 
proposed in [5] , [6] , [7] . 

In the present paper, we extend the classical PCM algo­
rithm along two directions. First, the rl parameters for each 
cluster are adapted as the algorithm evolves. This renders 
the algorithm flexible in uncovering the underlying clusters 
structure. Since the T) parameters need not be predetermined 
by another scheme, the proposed possibilistic algorithm be­
comes fully automated. The second extension arises as a di­
rect consequence of the first one and concerns the ability of 
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the algorithm to estimate the (unknown in practice) true num­
ber of natural clusters. More specifically, as it will be ex­
plained below in detail, if the algorithm starts with a crude 
overestimate of the number of natural clusters, it gradually 
reduces this number as it progresses and finally provides the 
actual number of clusters. Obviously, this is a very important 
property that improves significantly clustering performance, 
as corroborated by extensive simulation results. 

The rest of the paper is organized as follows. In Section 2, 
the FCM and PCM clustering algorithms are briefly reviewed. 
In Section 3, the new Adaptive PCM (APCM) clustering algo­
rithm is presented. In Section 4, the performance of APCM is 
tested against the k-means, the FCM and the PCM algorithms. 
Finally, concluding remarks are provided in Section 5. 

2. A BRIEF REVIEW OF FCM AND PCM 

Let X = {Xi E 1R£,i = 1, ... ,N} be a set of N, 1-
dimensional data vectors. Let also 8 = {OJ E �, j 
1, ... , m} be a set of m vectors that will be used for the rep­
resentation of the clusters formed in X. In what follows, we 
consider only Euclidean distances. 

2.1. Fuzzy c-means clustering (FCM) 

Let U = [uij],i = 1, ... ,N,j = 1, ... ,m be an N x m ma­
trix whose (i, j) element stands for the so called membership 

grade of Xi to the jth cluster, denoted by Cj and represented 
by the vector OJ. Let also liiT = [Ui1, ... , Uim] be the vector 
containing the elements of the ith row of U. Fuzzy c-means 
clustering (FCM) is based on the optimization of the follow­
ing objective function 

N m 

hClVI(8, U) = L L u;jllxi - Oj112, 
i=l j=l 

m 
subject to the constraints (a) Uij E [0, 1] and (b) L Uij 

j=l 
1, Vi, where 11.11 denotes the Euclidean distance between vec­
tors. The parameter q, called fuzzijier, takes values greater 
than 1. The membership grade, Uij, of the data point Xi to the 
jth cluster on the one hand and the cluster representatives on 
the other hand are iteratively estimated as 

respectively. 

2.2. Possibilistic c-means clustering (PCM) 

In possibilistic c-means clustering (PCM) the sum-to-one 
constraint is not imposed on the rows of U. Now, for 
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Uij'S we have that Uij E [0,1], i = 1, ... , N, j = 1, ... , m, 
N 

maXj=l, ... ,m Uij > 0 and 0 < L Uij < N [3] . In this 
i=l 

framework, Uij is interpreted as the degree of compatibility 
of Xi with OJ. The aim of the PCM is to move the vectors OJ 
to regions that are dense in data points of X. This is carried 
out via the minimization of, among others, the following ob­
jective function [8] (note that this function is associated with 
the proposed algorithm presented in the next section): 

N Tn N 

hCM(8,U) = LLUijllxi-OjI12+L7]j L(uij1nuij-uij) 

In this cost function, Tlj'S are positive parameters, each one 
associated with a cluster, which are set by the user and kept 
fixed during the execution of the algorithm. Loosely speak­
ing, each one of them indicates how the influence of a clus­
ter spreads around its representative; the smaller the value 
of Tlj, the smaller the influence of the jth cluster around OJ. 
The parameter Tlj has a major impact on the clustering re­
sults and therefore, its accurate estimation is quite important. 
A recommended formula for estimating Tlj, given in [3] , is 

LUi. >" Ilxi -(}j 112 . Tlj = �Ui.j>" 1 ' where a IS an appropriate threshold. 

Other such strategies have also been recommended (e.g. [3]). 
Minimization of JpClVI with respect to Ui/S and O/s 

leads to the Algorithm 1. The termination criterion may be 
the h -distance between O(t) and O(t - 1) to become less 
than a pre specified threshold E, where 0 is an ml x 1 vector 
containing all O/s. 

Algorithm 1 The PCM algorithm 
Fix: Tlj,j = 1, ... , m 
Initialize: OJ == OJ(O) 
t=O 
Repeat: 

%Updating U 
for i = 1 to N 

for j = 1 to m 
Uij(t) = exp( 

end for 

end for 

t=t+l 
%Updating 8 
for j = 1 to m 

N 

Ilx.;-(};(t)112 ) T/j 

L U·ij (t-1)xi 
OJ(t) = ::.::i-�.� __ _ 

L uij(t-1) 
-i=l 

end for 

Until: a termination criterion is met 

Note from the updating equations for OJ's, that all data 
vectors contribute to the estimation of each one of the repre­
sentatives. However, the farthest ones contribute less, since 
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the corresponding Uij'S are smaller for these vectors, as the 
updating equation for Uij 's indicates. Nevertheless, while the 
update of Uij'S is still in the early stages during which their 
estimates are not good enough yet, the estimates of Bj's in 
each iteration may not be accurate enough at these stages, af­
fecting thus their final estimation. In addition, it can be seen 
that Uij 's update is highly dependent from the 'f/j parameter. 

3. THE ADAPTIVE PCM (APCM) 

In this section, we will describe the modifications that need to 
be imposed on the PCM algorithm in order to implement the 
adaptation of both T)'S and the number of clusters. Note that 
the number of clusters m has to be set to a value greater - but 
not much greater - than the true number of the actual clusters 
formed in X. Potentially, the algorithm reduces m to the true 
number of clusters, by leading the cluster representatives in 
dense regions. Note, also, that even if the number of clusters 
m is initially underestimated, APCM will manage to uncover 
at least some of the dense regions, formed naturally in X. 

3.1. Parameter initialization 

As it has already been mentioned, the initialization of B j and 
rlJ is a crucial part of the algorithm, as it dramatically af­
fects the final clustering result. In the proposed clustering 
scheme, the initialization of Bj is carried out using the Max­
Min algorithm proposed in [9] . Assuming that the data vec­
tors form cohesive clusters, this algorithm will, in principle, 
return at least one vector from each cluster ([9] ), provided 
that m is sufficiently large. Max-Min algorithm determines 
m points of X that will be used as initial estimates of the rep­
resentatives, by first determining the two most distant points 
of Xl. Then the Max-Min algorithm proceeds by determin­
ing the remaining m - 2 data points, as described in the se­
quel and assigning them to Xre' which is the set containing 
the points that will be used as initial cluster representatives. 
It determines for each x E X - Xre its minimum distance 
dmin (x) from all the points in X re' Then, it identifies the 
point in X - Xre which has the maximum value among all 
dmin (x) , x E X - X re and assigns it to X re' The algorithm 
terminates when Xre contains m vectors. 

After the initialization of the Bj's, we propose T) 's to be 
initialized as follows (see also Algorithm 2). The di:tance of 
each Bj E Xre from its closest Bs E Xre - {Bj}, denoted 
by dmin (B j ), is determined first and then the algorithm sets 

- dmin(fJ'i)/2 h (3 (0 1) . . rlJ - _ log (3 , w ere E , IS an appropnately chosen 
parameter. To unravel the rationale of the last equation, we 
solve it with respect to (3, obtaining 

(3 = exp (_ dmin(Bj)/2 ) . 
f/j 

--�-------------
I Since this is a computational! y demanding procedure especial! y for large 

data sets (it requires O(N2) operations), we adopt here the approximate and 

low cost algorithm, described in [10], 
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Algorithm 2 Initialization of T)j'S 
for j = 1 to m 

Determine: dmin(Bj) = minfJ,Exre-{fJ.;} IIBj - Bsl1 2 

Set: rl '  = 
dmin(fJj)/2 ' 

J - log (3 
end for 

Comparing this with the updating equation for Uij'S of the 
PCM algorithm, one can deduce that T)j is chosen such that, 
for a given data point Xi that lies at distance dmin (Bj) /2 from 
Bj, its degree of compatibility (Uij) with the jth cluster equals 
to (3. As it has been verified experimentally, typical values for 
(3 that lead to satisfactory results are in the range [0.1,0.5]. 
The experiments showed also that (3 depends on how densely 
the natural clusters are located; low density requires smaller 
values of (3, while high density requires larger values of (3. 

3.2. Parameter adaptation 

Parameter adaptation in the proposed APCM clustering algo­
rithm refers to the adjustment of the number of clusters and 
the adaptation of r7's, which are two interrelated processes. 
These processes can be attached in the main while-loop of the 
classic possibilistic algorithm and the whole APCM becomes 
as shown in Algorithm 3. Here, label is aN-dimensional 
vector, whose ith component contains the index of the clus­
ter which is most compatible with the data vector Xi (i.e. the 
cluster CJ' for which UiJ' = 11lax�=1 u' ) n' denotes the I , ... ,m 'iT ' J 
number of the data points Xi, that are most compatible with 
the jth cluster and J-tj is the mean vector of these data points. 
In words, the "Possible cluster elimination" part of APCM 
examines if the index j of a cluster Cj appears in the vec­
tor label. If this is the case (i.e. if there exists at least one 
vector Xi that is most compatible with Cj), Cj is not elimi­
nated. Otherwise, Cj is eliminated. Also, T)j is estimated as 
the variance of the most compatible with Cj points, around 
their mean J-tj. 

Let us first comment on the proposed updating mechanism 
of 'f/j's. Note that, although their updating formula resembles 
to that used in the classical PCM, as well as many of its vari­
ants, it differs from them in two distinctive points. First 'f/j'S 
are updated taking into account only the data vectors that are 
most compatible to Cj. Second, the distances involved in the 
formula are between a data vector and the mean vector J-tj (t) , 
not the representative Bj(t) . This allows more accurate esti­
mates for 'f/j's. It is also noted that, in the case where there 
are two or more clusters, that are equally compatible with a 
specific Xi, then Xi will contribute to the determination of the 
T) parameter of only one (arbitrarily chosen) of them. 

Let us now comment on the immunity of the proposed al­
gorithm to overestimates on the number of clusters. In such 
a scenario and taking into account that a possibilistic type al­
gorithm moves the representatives in dense regions, the prob-
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Algorithm 3 The APCM algorithm 

Initialize: () j == () j (0) %from Max-Min Algorithm 
Initialize: T/j == T/j(O) %fromAlgorithm 2 
t=O 
Repeat: 

Update: U (as in Algorithm 1) 

t=t+l 
Update: 8 (as in Algorithm 1) 

%Possible cluster elimination 

for i = 1 to N 
Determine: Uir = maXj=l, . . .  ,m Uij 
Set: label(i) = T 

end for 

for j = 1 to rn 
If j rt label then 

Remove Cj 
rn=rn-l 

end if 

end for 

%Adaptation of 17 

for j = 1 to rn 
T/j(t) = n}Ct) LXi:Uij(t)=maX'�l mUirCt) Ilxi -fLj(t) II 

end for 

Until: a termination criterion is met 

ability to select as representative at least one point in each 
dense region is increased, due to the way the representatives 
are initially selected (via the Max-Min Algorithm). Then, due 
to the possibilistic nature of APCM, it is guaranteed, in prin­
ciple, that the number of the representatives which move to a 
specific dense region will be reduced to a single one. 

In order to get some further insight to the way the algo­
rithm works, assume that two cluster representatives (}r, () s al­
most coincide but let say 'f/r > ·f/s. Then, for a given data point 

x it is Ilxi-Orll" < Ilxi-O,112 
which implies that U· > U· 1." r], r/.� ' 1,r 1,S' 

considering the updating equation of Uij'S in the possibilistic 
algorithm. Loosely speaking, between two cluster represen­
tatives with different T/ parameters, the one with the greater T/ 
has a stronger influence around it. Thus, if (}r, (}s almost co­
incide, the influence of the one with the smaller T/ (T/s) will be 
vanished by the influence of the one with the greater '17 (-f/r), 
in the sense that Uir > Uis, for all data points Xi. 

4. EXPERIMENTAL RESULTS 

In this section, we test the proposed method through a syn­
thetic data set and two real data sets. Moreover, we compare 
the results with those obtained from k -means, FCM and PCM. 
Note that, because the PCM algorithm leads, in some cases, 
to coincident clusters, the clustering result is extracted taking 
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Table 1. The results of the synthetic data set 
rninitial m·final Rand Measure 

k-means 3 3 97.12% 

k-means 5 5 82.57% 
FCM 3 3 96.58% 

FCM 5 5 82.20% 
PCM 3 2 83.98% 
PCM 5 2 83.98% 
PCM 10 2 83 .98% 

APCM 5 3 96.79% 

APCM 10 3 96.79% 

into account only the truly "different " clusters. In addition, 
in order to make a fair comparison between all clustering al­
gorithms, the representatives (() j) are initialized based on the 
Max-Min scheme, in all of them. 

4.1. A synthetic data set experiment 

Let us consider a two-dimensional data set consisting of N = 
1000 points that form three clusters. Each cluster is modelled 
by a normal distribution. Their means are fLl = [1.75, 0.38jT, 
fL2 = [7.48, 3.07]T and fL3 = [5.43, 5.43]T, respectively, 
while their (common) covariance matrix is 0.8 . I2, where h 
is the 2 x 2 identity matrix. A number of 400 points have been 
generated by each one of the first and the third distribution, 
while 200 points have been generated by the second one. Note 
that the second and the third clusters are close enough to each 
other, while they are far away from the first one. Each data 
point is assigned to a cluster, utilizing the U matrix, as fol­
lows: Xi is assigned to cluster Cj if Uij = maxr=l, . . .  ,m Uir' 
Figs. 1 (a), (b) show the clustering results obtained using the 
k-means algorithm with rn = 3 and rn = 5, respectively. 
Similarly, in Figs. I (c), (d) we present the corresponding re­
sults for FCM. Fig. I (e) depicts the performance of PCM for 
rn = 5, while in addition, it shows the circled regions, cen­
tered at each () j and having radius equal to T/j, in which () j 
has increased influence. Finally, Fig. 1 (f) shows the results 
of APCM with m = 5 and f3 = O.l .  

In order to compare a clustering with the true data la­
bel information, we use the Rand Measure described in [1] . 
Table 1 shows the results of the previously mentioned algo­
rithms for the synthetic data set, where minitial and m final 
denote the initial and the final number of clusters, respec­
tively. It presents the Rand Measure of each algorithm, which 
results from the comparison of the label vector, and the true 
cluster identity of the vectors. 

As it is deduced from Fig. 1 and Table 1, when k-means 
and FCM are initialized by the (unknown in practice) true 
number of clusters (rn = 3), the provided results are very 
satisfactory. However, any deviation from this value causes a 
significant degradation to the obtained clustering quality. On 
the other hand, the classical PCM fails to unravel the under-
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Fig. 1. Clustering results of k-means with, (a) m = 3 and (b) m = 5, FCM with, (c) m = 3 and (d) m = 5, (e) PCM with 
m = 5 and (f) APCM with m = 5. Note that in PCM the clustering result is extracted taking into account only the truly 
"ditlerent " clusters. Bolded dots represent the final clusters' representatives. 

ying clustering structure, due to the fact that two clusters are 
close enough to each other and the algorithm does not have 
the ability to adapt Tlj'S in order to cope with this situation. 
Finally, the proposed APCM constantly produces very accu­
rate results for various initial values of m. 

4.2. Real data set experiments 

In this sub-section, the Iris data set and the Wine data set from 
VCI Library database [11] are considered. In order to effi­
ciently utilize all the information of the l features of these 
real data sets, we shall normalize them as 

Xip - xp 1 � 
N 

,xp = N � Xrp, 
1 '" ( � )2 

r=l 
N-l � Xrp - Xp 

r=l 

where i = 1, ... , N, p = 1, ... , l. 
Iris data set: This set consists of N = 150, 4-dimensional 

data points that form three classes, each one having 50 points. 
In this data set, two classes are overlapped thus one can argue 
whether the number of clusters m is 2 or 3. 
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As it is shown in Table 2, APCM ends up with mfinal = 2 
clusters independently of the initial number of clusters 
minitial. Since algorithms following the possibilistic philos­
ophy detect dense regions, the APCM ends with m final = 2 
clusters, which is an acceptable result, due to the nature of the 
data set. On the other hand, k-means and FCM perform better 
provided that they have been supplied with the true number 
of the underlying classes. However, this situation changes as 
we deviate from this value. In addition, it is interesting to 
note that for minitial = 2, both k-means and FCM provide 
the same clustering with that produced by APCM. This is an 
indication that APCM provides constantly the best possible 
two-cluster clustering for all initial values for m and (3 = 0.1. 
Finally, the original PCM needs a significantly greater than 3 
initial value for m in order to be competitive with the other 
schemes. 

Wine data set: This set consists of N = 178, 13-
dimensional data points that stem from three classes, the 
first with 59 points, the second with 71 and the third one with 
48 points. 

In the Wine data set, an exhaustive feature selection pro­
cedure preceded the clustering stage, due to the high dimen­
sionality of this data set in relation to the small number of data 
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Table 2 The results of the real Iris data set 
rninitial 

k-means 2 
k-means 3 
k-means 5 
k-means 8 
FCM 2 
FCM 3 
FCM 5 
FCM 8 
PCM 2 
PCM 3 
PCM 5 
PCM 8 
APCM 4 
APCM 5 
APCM 8 
APCM 10 

TrL final 
2 
3 
5 
8 
2 
3 
5 
8 

1 
1 
1 
2 

2 
2 
2 
2 

Rand Measure 
77.63% 

83.22% 

76.61% 
75.38% 
77.63% 

83.68% 

77.43% 
75.81 % 

32.89% 
32.89% 
32.89% 
74.98% 
77.63% 

77.63% 

77.63% 

77.63% 

Table 3 The results of the real Wine data set 
rninitial 

k-means 3 
k-means 5 
k-means 8 
FCM 3 
FCM 5 
FCM 8 

PCM 3 
PCM 5 
PCM 8 
APCM 4 
APCM 5 
APCM 8 

TrL final 
3 
5 
8 

3 
5 
8 

1 
1 
1 

3 
3 
3 

Rand Measure 

99.25% 

89.19% 
82.30% 

99.25% 

83.75% 
78.22% 

33.80% 
33.80% 
33.80% 

98.37% 

98.37% 

98.37% 

points. In order to make a fair comparison between the clus­
tering algorithms, as presented in Table. 3, we considered the 
optimal combination of features for each algorithm. It turned 
out that the best result for each algorithm was obtained using 
different combinations of eight features. As before, Table 3 
shows that APCM ((3 = 0.1) results in mfinal = 3 clusters 
independently of the initialization of the number of clusters 
(minitial), while the other clustering algorithms require the 
knowledge of the actual number of clusters, in order to ex­
tract satisfactory results. 

5. CONCLUSIONS 

In this paper a novel possibilistic clustering algorithm (APCM) 
has been proposed. The algorithm encompasses a proper 
initialization and a new updating mechanism for the '17 param­
eters and is immune to overestimates on the actual number 
of existing clusters. These features make the algorithm very 
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flexible in tracking the clustering environment under study. 
The performance of the proposed algorithm against k-means, 
FCM and the original PCM has been assessed using both syn­
thetic and real data sets. In all these experiments, it is shown 
that APCM has a steadily good performance irrespective of 
the initial number of clusters, which is not the case with 
k-means and FCM. In addition, APCM constantly provides 
better results compared to the original PCM. 
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