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Abstract—In this paper, two channel estimation schemes are
derived for specific cooperative scenarios. Both schemes are based
on the cross-relation criterion that has been extensively studied
in the (semi-) blind literature. As shown in the paper, in a
cooperative system, the channel estimator can be constructed in
a natural way either by fractionally-spaced or symbol-spaced
samples. We investigate the performance of these two schemes
using semi-analytic arguments accompanied by corresponding
experimental results.

I. INTRODUCTION

In the last few years, there have been growing research

efforts in the area of cooperative communications [1]. The

main idea is that terminals which, due to, mainly, cost and size

considerations, can afford only one transmit-receive antenna,

cooperate with each other in order to send and/or receive

information. The motivation behind their cooperation comes

from the gains that are achieved in multi-antenna systems

regarding the bandwidth, the consumed power and the error

rates because of the provided spatial diversity.

In most of the recently proposed methods for cooperative

systems, the involved channels are assumed to be known. Thus,

in order the methods to be of practical use, a channel esti-

mation method is needed to provide the desired information.

In a wireless environment, as in cooperative communications,

semi-blind techniques which combine a blind and a training-

based part would be particularly attractive. This combination

enjoys the advantages of the purely blind and training methods

without suffering from their drawbacks. Thus, among others,

on the one hand, the required training sequence is significantly

reduced as compared to a purely training-based method. On

the other hand, a semi-blind channel estimation method is

more robust compared to purely blind methods with respect to

frequently encountered problems, such as order overestimation

and existence of common roots [2].

Here, we will describe a simple semi-blind least-squares

channel estimator that is based on the cross-relation criterion

[3]. More specifically, we will see that in a cooperative

communications system, such a channel estimator can be con-

structed naturally either by using fractionally-spaced samples
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mented within the framework of the “Reinforcement Programme of Human
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or symbol-spaced samples. We shall study the performance

in either case and draw useful conclusions about these two

different schemes.

In the following section, a cooperative communications

system is described along with the transmission protocols

that are used. In Section III, the CR criterion is presented

and, then, a simple least-squares semi-blind channel estimator

is derived. In Section IV, two schemes for the construction

of the estimator are presented using fractionally-spaced and

symbol-spaced samples, respectively. In Section V, the two

schemes are compared through semi-analytic arguments that

are accompanied by experimental results. Finally, Section VI

concludes the paper.

II. COOPERATIVE SYSTEM AND TRANSMISSION

PROTOCOLS

We are interested in the communications system that is

depicted by Fig. 1. In this system, the source node S transmits a

signal s(n) to the destination node D either directly or through

the relay node R which operates in a half duplex mode. Node

R detects and forwards the signal s(n) to node D. We assume

that node R reconstructs perfectly the signal s(n), since, in

the scenario under consideration, the source node cooperates

with a relay node only when a high SNR channel exists

between them and, thus, the detection in the relay node could

be considered error-free. However, in Section V, we provide

some experimental results in order to demonstrate the impact

of errors on the performance of the proposed schemes.

S

R

D

hSR hRD

hSD

Fig. 1. The cooperative system

We consider the transmission protocols [4] which are pre-

sented in Table II. Both protocols need two phases in order

to pass the information from S to D. It is assumed that there

is no interference between the two phases, meaning that the

signals transmitted are well-separated by some means. In the

table, the notation X,Y → Z,W means that nodes X,Y transmit

information to nodes Z,W.
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TABLE I
TRANSMISSION PROTOCOLS

Phase A Phase B

Protocol I S → R, D S, R → D

Protocol II S → R, D R → D

Here, in each protocol, we focus on the channels whose

ending point is node D. Hence, in Protocol I, the discrete-

time signals that are received by node D in Phases A and B,

respectively, are

yA(n) = hH
SDs(n) + w(n), (1)

yB(n) = (hH
SD + hH

RD)s(n) + w(n), (2)

where hH
i = [h∗

i (0), h∗

i (1) . . . h∗

i (L)], s(n) = [s(n), s(n −
1) . . . s(n−L)]T , i ∈ {SD,RD} and n = L, . . . , N + L− 1.

The (.)T , (.)H , (.)∗, L, N and w(n) denote the transposition,

complex conjugate transposition and complex conjugate oper-

ations, the channel order, the number of samples and the noise

samples, respectively. The latter are assumed independent and

identically distributed zero mean complex Gaussian random

variables. In (2), it is assumed that either nodes S and R trans-

mit in a synchronous manner or any asynchronicity between

them is incorporated into the channels. Also, channels hSD and

hRD are assumed constant over each phase and, additionally,

hSD remains the same for both phases.

The corresponding signals for the case of Protocol II are

yA(n) = hH
SDs(n) + w(n), (3)

yB(n) = hH
RDs(n) + w(n). (4)

The definitions and the assumptions of Protocol I are valid

here, too. However, in this case, nodes S and R are not required

to transmit synchronously.

III. SEMI-BLIND CHANNEL ESTIMATION BASED ON THE

CROSS-RELATION CRITERION

The cross-relation criterion (CR), [3], is used when the

communications system can be modeled as a multichannel one.

Such a model is obtained either by oversampling the output

of a single-input single-output (SISO) system or because the

system follows this model by design [2]. Here, we focus on

systems with two outputs.

More specifically, let us assume that the two noise-free

outputs are given by y
1

= h1∗s and y
2

= h2∗s, respectively,

where ∗ denotes the convolution operation. Also, let us assume

that y
1
, y

2
are filtered by the filters w1, w2, respectively. The

CR criterion states that if y
1
∗w1 = y

2
∗w2, then w1 = αh2

and w2 = αh1 and, therefore, the channels can be estimated

blindly up to a constant factor.

Using the CR criterion y
1
∗ h2 = y

2
∗ h1, we obtain

the following linear system of equations with respect to the

unknown channel vectors

[
Y 2 −Y 1

]
[

h1

h2

]

= 0. (5)

hSD
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hSD,2

yA
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Fig. 2. The two schemes for Protocol II

In (5), the Y k’s and hk’s, k = 1, 2, are given by

Y k =







yk(2L) . . . yk(L)
yk(2L + 1) . . . yk(L + 1)

. . . . . . . . .
yk(N + L − 1) . . . yk(N − 1)







, (6)

hk = [hk(0), hk(1) . . . hk(L)]T , (7)

yk(n) = hH
k s(n), (8)

and

s(n) = [s(n), . . . , s(n − L)]T . (9)

A semi-blind estimator can be constructed if (5) is properly

extended by the training-based channel outputs yk = hk ∗ st,

where st is a sequence of M known symbols and k = 1, 2.

Hence, the extended version of (5) becomes

Y

︷ ︸︸ ︷




Y 2 −Y 1

St 0

0 St





h

︷ ︸︸ ︷
[

h1

h2

]

=

z

︷ ︸︸ ︷




0

z1

z2



, (10)

where St is defined as

St =







s(L) . . . s(0)
s(L + 1) . . . s(1)

. . . . . . . . .
s(M − 1) . . . s(M − L − 1)







. (11)

Additionally, zk = [yk(L), . . . , yk(M−1)]T , k = 1, 2. Finally,

it is assumed that M ≪ N .

In a real scenario, noise is added at the channels’ outputs

and, in this case, the semi-blind estimator is obtained, using

the least-squares criterion, by (12).

ĥ = (Y HY )−1Y Hz. (12)
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TABLE II
PAIRS OF CHANNELS THAT CORRESPOND TO h1 , h2 OF EQ. 10

Scheme I Scheme II

Protocol I {hSD,1, hSD,2}, {hSD,1 + hRD,1, hSD,2 + hRD,2} {hSD,1, hSD,1 + hRD,1}, {hSD,2, hSD,2 + hRD,2}
Protocol II {hSD,1, hSD,2}, {hRD,1, hRD,2} {hSD,1, hRD,1}, {hSD,2, hRD,2}

IV. PROPOSED SCHEMES

The two alternative estimation schemes that are proposed

in this section dictate the way that the linear system of (10) is

constructed. As we will see later on, this has an impact on the

performance of the semi-blind estimator. Let us assume that

Protocol II is employed. The following description applies also

to Protocol I in a straightforward way.

In Scheme I (Fig. 2, left part), node D treats each phase

of the transmission separately and, hence, the corresponding

channels are viewed as SISO systems. This means that in order

to use the estimator of (12), node D has to oversample, at each

phase, the corresponding signals.

More specifically, in Phase A, the signal of (3) is over-

sampled and the signals yA,k(n) = hH
SD,ks(n) + wk(n) for

k = 1, 2 are produced. These two signals follow a multichannel

model, as the one described in the previous section, and are

used for the construction of (10) and the subsequent estimation

of the subchannels hSD,k. So, in this case the following holds.





Y A,2 −Y A,1

St 0

0 St





[
hSD,1

hSD,2

]

=





0

zA,1

zA,2



 (13)

Similarly, in Phase B, node D estimates the subchannels hRD,k

and the following holds.





Y B,2 −Y B,1

St 0

0 St





[
hRD,1

hRD,2

]

=





0

zB,1

zB,2



 (14)

In Scheme II (Fig. 2, right part), node D waits until both

phases are completed and only then attempts the estimation of

the channels. In this case, no oversampling is required because

the two signals (i.e. (3), (4)) that are used for the estimation

of the channels hSD, hRD, already follow the multichannel

model that is required for the implementation of the estimator

of Eq. (12). The linear system of equations in this case is





Y B −Y A

St 0

0 St





[
hSD

hRD

]

=





0

zA

zB



 . (15)

In the case of Protocol I, the two schemes are applied in a

similar way. The only difference is in the second phase where

the channel to be estimated is the hSD + hRD.

V. EXPERIMENTAL STUDY

In this section, the experimental evaluation of the two

schemes is presented.

A. Preliminaries

The binary phase shift keying modulation is employed.

Table II shows the pairs of channels that are estimated for

each protocol and scheme. For example, the channel pairs in

(13), (14) appear in the (2,1) cell of the table, i.e. for Scheme

I and Protocol II.

In Scheme I, we have to estimate two subchannels for each

of the channels of the two phases. In order to be fair in the

comparison of the two schemes, we, also, estimate, in the case

of Scheme II, two subchannels for each of the channels of the

two phases. This is done by employing oversampling, although

this is not actually required. In this case, the second linear

system is constructed from the corresponding channel pairs in

a straight-forward way.

Hence, for each scheme, the estimator of (12) is used twice

and four subchannel estimates are produced. For our conve-

nience, the two estimators are combined into one producing

an augmented version. In what follows, the augmented matrix

Y is denoted as Y a. For example, the augmented matrix for

(13), (14) is

Y a =











Y A,2 −Y A,1 0 0

0 0 Y B,2 −Y B,1

St 0 0 0

0 St 0 0

0 0 St 0

0 0 0 St











. (16)

The other terms of the linear system and the combined semi-

blind estimator are derived in a straight-forward way.

Three types of channels have been used in our experiments.

In the first type, which is called random, the elements of

the subchannels hSD,k, hRD,k are complex Gaussian random

variables with zero mean and variance equal to 2. In the

experiments, the length of each subchannel is set to 26.

The second type (so-called random-rc) is produced by

taking the convolution of a raised cosine pulse g(.) with a

random vector whose elements are distributed as above (the

length of the vector with symbol spaced elements is set to

26). The pulse has roll-of factor 0.3, extends to 6 symbol

intervals and is oversampled by 2. In this case, the length of

each subchannel is 32.

Finally, the third one is a multipath channel of the form
∑

j ajg(t − τj), where aj’s are complex Gaussian random

variables distributed as above and τj’s are uniformly distributed

on prespecified intervals. More specifically, hSD is assumed to

have four paths with delays 0, U(6, 9), U(13, 16), U(20, 22)
and hRD three paths with delays U(1, 4), U(10, 12), and

U(17.5, 19), where U(a, b) denotes that the corresponding

time delay lies uniformly in the interval (a, b).
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TABLE III
MINIMUM SINGULAR VALUES OF THE AUGMENTED MATRIX OF (16)

Protocol I Random Random-RC Parametric

Scheme I 2.3577 0.0510 0.5039

Scheme II 1.9027 1.2324 1.7068

Protocol II Random Random-RC Parametric

Scheme I 2.3415 0.0519 0.5187

Scheme II 2.3284 1.6164 2.2507

B. Semi-analytic arguments

In Table III, the minimum singular values of the extended

noise-free matrix Y a are shown for different protocol, scheme

and channel combinations. It is known that (e.g., [5], page 72)

the minimum singular value of a matrix is the 2-norm distance

of that matrix from the set of all rank-deficient matrices.

Although Y a is full rank, it may be close to the set of rank-

deficient matrices depending on the channel and the scheme.

The above problem can be explained if we consider the

columns of Y 1 and Y 2 in (5). The elements y1(n), y2(n)
of these matrices are highly correlated if the channels h1, h2

are highly correlated and, hence, the corresponding columns

are near dependent. In Scheme I, h1, h2 are derived by

oversampling the channel that is estimated at each phase

for each protocol (see Table II). When the channel to be

estimated incorporates a raised cosine pulse (or any other

smooth pulse), the derived subchannels are correlated because

of the pulse and, hence, this has an impact on the condition

of the matrix [Y 2 −Y 1] (e.g. this is the case for the random-

rc and parametric channels). In Scheme II, the correlation of

the column elements of the two matrices is smaller because

the subchannels are derived from the oversampling of differ-

ent channels. However, in this scheme, when Protocol I is

used, there is a correlation because the subchannels to be

estimated have common parts, e.g. both subchannels hSD,1,

hSD,1 + hSD,2 have the term hSD,1. The augmented matrix

Y a has two pairs of such matrices and, if we take into account

the previous remarks, Y a can be, as mentioned earlier, closer

or further from the set of rank deficient matrices.

In Protocol I, Scheme II produces a Y a of better condition

for all channels except the random one as compared to Scheme

I. This is reasonable because in the random channels, Scheme

II pairs subchannels which have common parts and, so, they

are correlated, thus affecting the condition of Y a. For the

other two channel types, the behavior is reversed because,

due to raised cosine pulse, the subchannels produced by the

oversampling become correlated. This means that, in Scheme

II, the subchannels tend to be uncorrelated because they are

derived from different channels and, hence, Y a is further from

the set of rank deficient matrices as opposed to the one of

Scheme I.

Similar are the observations for Protocol II. However, in the

case of the random channels, the condition of Y a is the same

regardless the scheme. This is due to the fact that in Protocol

II, the channels do not have common parts.

Finally, comparing the two protocols, we see that in the
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Fig. 3. The NMSE for Protocol I
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Fig. 4. The NMSE for Protocol II

case of Scheme I, the conditions of Y a are similar. However,

in the case of Scheme II, Protocol II is better than Protocol I

because the involved channel pairs, as already mentioned, do

not have common parts.

C. Simulations

The normalized mean squared error ‖h − ĥ‖2/‖h‖2

(NMSE) is obtained through Monte-Carlo simulations. Here,

h and the corresponding estimation ĥ incorporate all four

subchannels. In Figs. 3, 4, the NMSE curves versus the

signal to noise ratio (SNR) are plotted for Protocol I and II,

respectively. We see in the figures that the ordering (worst to

best) of the NMSE curves is the same as the ordering (small to

large) of the minimum singular values. Also, it is evident that

Scheme II outperforms Scheme I for the cases of the random-

rc and parametric channels which are the types that are most

frequently encountered in practice.

D. Impact of errors in the relay

The semi-analytic arguments and the experimental results

that were presented in the previous sections are derived under
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the assumption that in node R the decoding process is error-

free. However, this assumption may not be true in practice.

In the present section, we provide some experiments assuming

that errors do occur in the relay.

More specifically, we define a probability of error Pe for

the symbol sequence that node R detects and retransmits

during the second phase. By doing this, we hide the details

of the detecting process at the relay and focus only on the

performance of the two schemes. As we will see, the impact

on the performance comes from the fact that in order the

CR criterion in (5) to be valid, the input to the multichannel

model (produced either by oversampling or by design) must

be exactly the same.

We produce the NMSE curves versus the SNR for five

values of Pe, i.e. Pe = {0, 10−1, 10−2, 10−3, 10−4}. Here,

the experimental results refer only to Protocol II. The results

for Protocol I are similar especially for Scheme II. Comments

will be made at the appropriate point for Scheme I.

In Fig. 5, the NMSE curves for Scheme I are presented.

As observed, the performance of this scheme is independent

of the errors that occur in the relay. This comes from the fact

that the subchannels that are estimated in each phase, have

always a common input. More specifically, at the first phase,

the channels hSD,1 and hSD,2 are estimated using (13) which

is based on the multichannel model yA,k = hH
SD,ks(n), k =

1, 2. At the second phase, the corresponding estimation uses

(14) which is based on yB,k = hH
RD,kse(n), k = 1, 2. Thus,

at each separate phase, the corresponding subchannels have a

common input regardless it is correct (i.e. s(n)) or erroneous

(i.e. se(n)), and therefore, the CR criterion may be applied

equally well. When Protocol I is used, the performance of the

scheme is affected because, at the second phase, the channel

is not the sum of hSD and hRD since the inputs to them are

different. Hence, the multichannel model is only approximately

valid which has an impact on the validity of the CR criterion.

In Fig. 6, the NMSE curves for Scheme II are presented.

Here, the performance is affected by the Pe at the relay.

This observation comes from the fact that the channels hSD

and hRD are estimated together using (15). In this case, the

outputs yA = hH
SDs(n) and yB = hH

RDse(n) that are used

for the construction of (15), do not have a common input and,

therefore, the performance is degraded.

In conclusion, when errors occur in the relay, the relative

performance of the two schemes depends on the involved

channels and the Pe at the relay.

VI. CONCLUSIONS

In this paper, two schemes have been described and evalu-

ated for the construction of a semi-blind least-squares estimator

for a cooperative system based on the CR criterion. When

no errors occur at node R, Scheme II outperforms Scheme I

according to the semi-analytic arguments and the experiments

presented in sections V-B and V-C, respectively. The main

reason for this stems from the fact that when Scheme II is used,

the matrix Y is better conditioned because the matrices Y 1,

Y 2 have uncorrelated columns with each other. This is not the
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Fig. 5. The NMSE for Scheme I using Protocol II with errors in the relay
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Fig. 6. The NMSE for Scheme II using Protocol II with errors in the relay

case with Scheme I where the channels under consideration are

closely related since they constitute different sampled versions

of the same overall channel. However, when errors do occur

in the relay, it is not clear which scheme is best and the choice

depends on the channel that is involved and on the Pe at the

relay.
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