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Abstract- In this paper the information outage probabil-
ity (IOP) of orthogonal space-time block coded multiple-input
multiple-output (MIMO) systems operating over Hoyt distributed
fading channels is investigated. In our analysis, we consider two
separate fading cases. For independent identically distributed
(i.i.d.) fading channels, exact closed-form expressions of the IOP
are derived. For non-identically Hoyt distributed fading, we
express the problem in a different equivalent form, and propose
the use of the saddlepoint method to approximate the IOP.
As verified by extensive computer simulations, the saddlepoint
approximation method provides very accurate results, making it
an approach that could potentially be applied in performance
evaluation of wireless communication systems.

I. INTRODUCTION

Due to its many attractive features, diversity transmission
using orthogonal space-time block codes (OSTBC) has gained
considerable attention in recent years [1]. Among others, this
approach offers full spatial diversity and maximum likelihood
performance with linear decoding complexity. Performance
evaluation of OSTBC MIMO systems can be carried out by
assuming an appropriate statistical fading model for the prop-
agation environment. In the past, various performance analysis
results have been presented for OSTBC MIMO operating over
Rayleigh, Nakagami-m [2], and Nakagami-n (Rice) [3] fading
channels. However, only a few relevant results exist for the
Nakagami-q (Hoyt) distribution. As shown in many studies,
the Hoyt fading model provides a very accurate fit to experi-
mental channel measurements in various telecommunications
applications. For instance, in [4] this model has been used in
outage analysis of cellular mobile radio systems. Similarly, the
Hoyt distribution can be considered an accurate fading model
for satellite links with strong ionospheric scintillation, ranging
from one-sided Gaussian fading to Rayleigh fading [5].

In this work, the information outage probability (IOP)
of OSTBC MIMO systems operating over independent but
not necessarily identical Hoyt distributed fading channels is
investigated. As will be shown in the following analysis,
the IOP can be computed by determining the distribution of
the sum of squares of a number of Hoyt distributed random
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variables (RVs). Such distribution is described in [6] by an
infinite series, while in [7] an exact closed-form expression is
derived, when the number of i.i.d. Hoyt RVs is even. In this
paper, the IOP is determined irrespective of the number of
transmit and receive antennas of the MIMO system, i.e., the
number of Hoyt RVs. For i.i.d. Hoyt fading exact closed-form
expressions are derived, avoiding the use of infinite series.
For independent non-identically distributed Hoyt fading, the
so-called saddlepoint method [8] is applied to approximate
the required pdf. Although the saddlepoint approximation
method has been extensively used in statistics, its use in
performance evaluation of wireless communication systems
has been rather limited. Extensive computer simulations verify
our theoretical analysis with respect to both exact closed-form
and approximation results.
The outline of the paper is as follows. In Section II the

problem is formulated and in Section III the IOP over OSTBC
MIMO Hoyt fading channels is derived. Simulation results are
presented in Section IV, while some concluding remarks are
given in Section V.

II. PROBLEM STATEMENT

Let us consider an OSTBC MIMO system with nt transmit
and nr receive antennas. It can then be shown that the nor-
malized capacity of the system, measured in bits/second/Hertz,
has the form [1]

C = R log2 (1 + Ht F

ntR No) (1)

where R is the rate of the OSTBC, S is the average symbol
power allocated to the transmit antennas and N is the noise
power that is common for all receive antennas. In addition,

nt n,

IIHI E EZ hi,j 2
i .j

F (2)

is the square of the Frobenius norm of the channel matrix,
where hi,j stands for the amplitude of the fading coefficient
between the ith transmit and the jth receive antenna. It is
assumed that Ih,jj are independent Hoyt distributed RVs,
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whose pdf is given by [9]

(r)(+ 2j) r (+qf,j) '2'j12
(3)

for r > 0, where Q = E[ hij 2], Io( ) is the zeroth
order modified Bessel function of the first kind and parameter
qi,j may take different values among the channel fading
coefficients. It is then easy to derive that the RV zij =hi,j2
will be distributed according to [9]

(I 4qq2( (4(1 )

PZi'j C_~ z,3J (4)

Moreover, the moment generating function (MGF) of z ij will
be given by the following expression [9]

with
n+l n-I

a 1 + q2) 2 -F ( q 2
V2Qq J r (n2) I1 q2J

b (1 + q2)2
4Qq2

and

(10)

(1 1)

(12)
1 - q4
4Qq2

In (9), Ip (.) is the p-th order modified Bessel function of the
first kind. The pdf of (9) is of the same form of the McKay
distribution [12]. It also appears in [11], [6] as the pdf of a
squared rq-,u or A-,u distributed RV respectively. The CDF of
Ps (r) is given by

F; (x) n2 1 -brn (cr) dr. (13)

M (s) 1+ 2
1

Ws - )+i3(s 1 +q j/ )

An important performance evaluation criterion of wireless
communications systems is the so-called information outage
probability [10], defined as the probability that a transmission
rate Co cannot be supported, i.e.,

Pout (Co) = Pr (C < Co) = Pr (l H 2 <A . (6)

From (1) and (6), A is readily expressed as

A NntR (2cO 1) . (7)

We deduce from (6) that in order to calculate IOP, the cu-
mulative distribution function (CDF) of the squared Frobenius
norm of the channel matrix is required. More specifically, from
(2), the CDF of the sum of ntnr squared independent Hoyt
RVs must be determined.

III. IOP OF OSTBC OVER HOYT DISTRIBUTED CHANNELS

In this section, exact closed-form expressions of the IOP
for i.i.d. Hoyt distributed fading in OSTBC MIMO systems
are derived. In the sequel, approximations of the IOP for non-
identically Hoyt distributed fading are also provided.

A. i. i.d. Hoyt fading
From (5), assuming that Qjj = Q and qi,j = q V i and j,

the MGF of the sum s of n squared Hoyt RVs can be written
as follows 1

(( q2 n

M,§ (s) 2q/ n n * (8)

1( 2)q2 1( 2 )2

where

and

In [6] this CDF is expressed in a form comprising infinite
series. Nevertheless, closed-form expressions for the CDF can
be obtained if the fact that n is an integer is taken into
consideration. More specifically, we distinguish the following
two cases.

1) CDF for n even: In this case, by using the properties
of the modified Bessel function of the first kind of order
(n- 1) /2 with n even, [13], the CDF in (13) can be expressed
as:

n_1F jX

F., (x) =- v'-;; I:Uk T'r2 -k - (bc)rdr
n _ 1

+a nk1e (b+c)rd
v'2w7c k=0

(_I)k (n -lI+ k)!
k! (n -1 -k)! (2c)k

_ !(-') (n1 k)(c)!
k! (n2 - I- k)! (2c)k

(14)

(15)

(16)

After some algebraic manipulations F§ (x) can be presented
in a more compact form as

F§ (x) = , dk -k, 2
2( k2Q)

2
1

k=O
gn (2 ' 2Qq2

(17)

where -y (.) is the incomplete gamma function [14], while
By properly exploiting the relation of the MGF with the
Laplace transform, it can be shown that the pdf of the sum of
i.i.d. squared Hoyt RVs has the form [11]

P. (r) = ar 2 e- brIn- (cr)2
(9)

dk = (-1) k

and

gk = (-1)k2'In our case n = ntnr.

n
( 2

-1 -

- + k)!q2k
-k)!F (n) (1-
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(19)
q2) 2k
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Note that an equivalent expression of the CDF for n even was
presented in [7] following though a different approach.
As a result, the IOP for MIMO OSTBC for n = ntnr even

can be expressed as

k=O

n _ 1

+ ,: gk<' -n _ k: A)
(20)

with A given by (7) and dk, gk by (18), (19) respectively.
2) CDFfor n odd: In case of n odd, although no expansion

of the modified Bessel function as a finite sum seems to be
possible, we can still derive the form of the CDF of the sum
of i.i.d. squared Hoyt RVs by exploiting integrals of the form

Jx

~~~~Zm(u X) = Zmc-uzl. (Z) dz. (21)

where Je (.) is the Rice Je function [15]. As a result, we have
that

m m

Zm(U,X) Z ckXke-uxIkk(X)+Z (kXke uXIk1 (X)
k=1 k=1

+-Ie (I ,
u u J

(28)

From (6),(13) and (21) we have

Pot0 (Co) = n+iZn1 (-cA) (29)

and thus the IOP for n = ntnr odd is expressed in closed
form according to (28). Note that in practice the value of the
'e function can be computed using its relation to the Marcum-
Q function, which is included in most mathematical software
packages, [16], i.e.,

Specifically, combining equations [14, eq. (11.3.4)], [14, eq.
(11.3.5)], Zm (u,x) can be written as

Z (U X) = 2u -x XmI (x)

2_ 1 _-L.m _l (Xz)2m-1

+ 2 - Zm- (u x).

(22)

Hence, for m taking positive integer values, recursive appli-
cation of expression (22) leads to

m m

Zm (U, X) ZE Xke-x_k (X)+E(,I)Z cke-
k=l k=l

+ ZO (u,x)

,here
m

H (2i- 1)u i=l
(a2 m-k±l k

H (2i 1)
j=l

m

H (2i 1)

(U2 m-1mk+1 k
H (2i 1)
j=l

rid
m

H(2i - 1)
i=l

uxI_k-1 (X)

2Q( (u:+ u w)
(30)

where W = VU2 VV2 and U > IVl. Note that due to the
relation c < b, (30) can be applied in our case.

B. Non-identically distributed Hoyt fading
It is known that a squared Hoyt RV can be expressed as the

sum of squares of two independent zero-mean Gaussian RVs
with different variances [17]. More specifically, the relation
between the q and Q parameters of a Hoyt RV and the
variances or, and (J2 of the underlying Gaussian RVs is
described by the equations

(71 =
1 2 and +72 Qq2

1 + q2.

(23) Therefore, for independent h jj , (2) can be written as

2n

IIH F =Ekwk
k=l

(24)

(a2 -1)
I

Additionally, it is rather straightforward to prove that Z0 (x)
is written as

Zo (u, x) =-e (,ux (27)
U

where n = ntnr, wk's are standard independent normal
RVs, (7k's are related to the parameters of the corresponding
Hoyt RVs as described in (31) and denotes equality in
distribution. Hence, in order to compute the IOP, calculation
of the CDF of a quadratic form in standard normal RVs is
required. Such a CDF is known to have an exact form involv-
ing an infinite series expansion. Thus, for practical reasons a

number of approximation methods have been developed, as

described in [18]. In our analysis, the so-called saddlepoint
approximation method, which provides quite accurate results
with respect to the desired CDF, is used.

Although the saddlepoint approximation was introduced
more than fifty years ago, it has only recently been proposed
for the approximation of the distribution of quadratic forms
in normal RVs [19]. A thorough description of the saddle-
point approximation method can be found in [8]. Using this
approach, we can approximate the value of the CDF at any

i+ uIe (,U)+e-UI0(V)

w

ar

(31)

(32)



point either by using the so-called Lugannani-Rice formula
[20] or the Barndorff-Nielsen formula [21]. Although both
formulas provide quite similar results [19], the Barndorff-
Nielsen formula was utilized. According to this approach,
the CDF of a quadratic form in normal RVs at a point x is
approximated by the quantity

F§(x) ={u+!1og(u)}
()
04

E< 0.4
E

where Jb (.) is the CDF of a standard normal RV, and u, v are

defined as

u = sign (z) +/2 (zx -f (z)) and v z f(2) (z) (34)

In the last equation f( ), f(-)(.) are the cumulant generating
function of the quadratic form and its ith order derivative,
respectively, and z is the saddlepoint, i.e., the root of the
equation

f(l) (z) = X. (35)
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Fig. 1. IOP of OSTBC Hoyt fading
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In the case of a quadratic form in normal RVs such as the
one given in (32), the cumulant generating function will be
defined as

2za2) (36)
2n

f (z) = -2E log (I1
k=1

and the saddlepoint z will be given by the root of the following
equation

2n 2

E -2( 2
k=l

(37)

It is clear that the saddlepoint equation (37) has more

than one roots. Neverhteless, only one of them belongs to
the domain of the cumulant generating function and this root
will be the saddlepoint. Specifically, the saddlepoint will be
the root z of (37) that satisfies z < 1/ (20) where 0 =

max {o2, ,2*..., (22ntn } [19]. More details on the existence

and uniqueness of the saddlepoint can be found in [8].
Having defined the saddlepoint, the IOP for any A can be

approximated by setting x = A in (37) in order to compute
the saddlepoint, which is then substituted in (34) to obtain the
u, v in (33).

IV. PERFORMANCE RESULTS

In this section theoretical results obtained using (29) and
(33) along with computer simulations results are presented.
In Fig. 1, IOP is plotted versus the transmission rate Co
for a 3 x 1 and a 2 x 2 MIMO OSTBC system with i.i.d.
and independent non-identical Hoyt fading respectively. For
the case of a 3 x 1 MIMO system, a 3/4 rate OSTBC is
considered with the SNR set to 15dB. The i.i.d. channel
parameters are (Q, q) = (1,0.20). For the 2 x 2 MIMO OSTBC
system the Alamouti scheme is considered with SNR equal
to 15dB. The parameters of the four non-identical channels
are (=1,1,qil) (1.22,0.69), (Q1,2,ql,2) = (0.79,0.94),
(Q2,1,q2,1) = (1.21,0.78) and (Q2,2q2,2) = (0.78,0.54). We
observe that the corresponding theoretical and experimental
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Fig. 2. IOP vs SNR for Co = 2

curves almost coincide, thus verifying our analysis. In Fig.
2, IOP is plotted versus SNR for non-identical Hoyt fading,
after fixing Co to 2. For the 2 x 2 MIMO OSTBC system
the channel specifications mentioned earlier were used, while
for the 3 x 1 MIMO OSTBC system the parameters of
the non-identical channels are (Q=,1, qil) (0.90,0.49),
(Q2,1, q2,1) = (0.84,0.89), (Q3,1, q3,1) = (1.26,0.92). No-
tice, that in all cases, the values of the Q parameters are

chosen such that the total power is equal to ntnr. The curves

of Fig. 2 show that the saddlepoint approximation method
achieves an excellent degree of accuracy in estimating the
CDF, which results from the analysis of the original problem.
Finally, in Fig. 3 the 5% theoretical outage capacity versus

SNR is presented, i.e., the minimum capacity value that is
supported with probability 95%.

V. CONCLUSION

In this paper, we deal with the problem of Hoyt fading
in OSTBC MIMO systems. Useful results concerning the in-
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Fig. 3. 5% Outage Capacity vs SNR

formation outage probability for independent non-necessarily
identical distributed Hoyt fading channels are presented.
Specifically, exact closed-form expressions are derived for
i.i.d. Hoyt fading. Moreover, the saddlepoint method is pro-

posed to approximate the IOP for non-identical Hoyt fading
channels. The method is very simple to implement and pro-

vides very accurate estimates of the IOP for various OTBC
MIMO systems and operating SNRs. Potential application of
the saddlepoint approximation method in performance eval-
uation of wireless communications systems is under current
investigation.
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