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ABSTRACT
In this paper a generalized possibilistic c-means clustering algo-
rithm, calledGeneralizedAdaptive Possibilistic C-Means (GAPCM),
is presented. The algorithm extents the abilities of its ancestor,
Adaptive Possibilistic C-Means (APCM), allowing the study of cases
where the data form compact and hyper-ellipsoidally shaped clus-
ters, whose points may lie around certain subspaces in the feature
space. In addition, these clusters may be located very close, or even
intersect each other. More specifically, a proper definition and an
adaptivity concept of the parameters that GAPCM involves, during
its execution, renders the algorithm able to unravel on its own the
actual hyper-ellipsoidal shape of the clusters formed by the data.
The performance of the algorithm is assessed through its compar-
ison with other related algorithms on the basis of both simulated
and real data sets.

CCS CONCEPTS
• Information systems → Clustering; • Theory of computa-
tion → Unsupervised learning and clustering; • Computing
methodologies → Cluster analysis;
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possibilistic clustering, hyper-ellipsoidally shaped clusters, adap-
tivity
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1 INTRODUCTION
Clustering is a significant branch of the general area of machine
learning, where given a set of objects, the aim is to group more
"similar" objects to the same group (cluster) and less "similar" ob-
jects to different groups, based on a suitable similarity measure.
To achieve this, each object is represented by a set of, say l , fea-
tures, which form its associated feature vector, while the set of
all these feature vectors is called data set. In the present work we
deal with parametric clustering, where each cluster is represented
by a vector called cluster representative, which lies in the same l-
dimensional space with the data and (ideally) is located at the cen-
ter of the cluster.

According to the way the data vectors are associated with the
clusters, various types of clustering arise, the most significant of
which are: (a) hard clustering, where each data vector belongs ex-
clusively to a single cluster, (b) fuzzy clustering, where each data
vector is shared among all available clusters and (c) possibilistic
clustering, where each data vector is associated with a certain clus-
ter independently of how it is associated with the remaining ones.

A vast amount of clustering algorithms that have been devel-
oped during the last decades, belongs to the so called cost function
optimization based algorithms category. Celebrated algorithms of
this category are the k-means (hard clustering), e.g. [5], the fuzzy
c-means (FCM - fuzzy clustering), e.g. [2], [3] and the possibilistic
c-means (PCM - possibilistic clustering), e.g. [6], [7]. In the present
paper we focus on PCM clustering algorithms. These are iterative
and at each iteration they move the representatives towards their
closest regions that are dense in data points (dense regions), that is,
to regions where significant aggregations of data points (clusters)
exist, via the minimization of suitably defined cost functions.

In PCMs the cluster representatives are updated, based on the
degrees of compatibility of the data vectors with the clusters. In
contrast to FCM and k-means, in PCM algorithms, the degrees of
compatibility of a certain data vector with the various clusters are
mutually independent. A direct consequence of this fact is that
even if the number of clusters is overestimated, in principle, all
representatives will be driven to dense regions (which is not the
case for FCM or k-means), making thus feasible the uncovering of
the actual clusters. However, in this case, the scenario where two
or more cluster representatives are led to the same dense in data
region, may arise [14], [1]. In addition, PCM deals well with noisy
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Figure 1: An example data set where PCM algorithm is not able
to correctly classify the data points that lie towards the "tails" of
the hyper-ellipsoids. Cluster representatives are denoted by black
dots.
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(b) PCM clustering result

Figure 2: An example data set where PCM algorithm is not able
to distinguish hyper-ellipsoidally shaped clusters whose centers
coincide. Cluster representatives are denoted by black dots.

data points and outliers, compared to k-means [5] and FCM [2], [3].
However, it involves a set of additional parameters, one for each
cluster, usually denoted by γ , whose accurate estimation is of cru-
cial importance. Once γ ’s have been estimated, they are kept fixed
during the execution of the PCM algorithm. It is therefore clear
that poor estimates for them are likely to lead to poor clustering
performance, especially in more demanding data sets (e.g. where
clusters are close to each other and/or clusters with significantly
different variances are encountered in the data set).

Recently, two new possibilistic algorithms have been proposed
that overcome the above issues of PCMs [12], [13]. Specifically,
in [12], the Adaptive Possibilistic C-Means (APCM) algorithm is
presented, whose main characteristic is that the parameters γ , af-
ter their proper initialization, are adapted during the execution of
the algorithm. The contribution of this special feature of APCM is
twofold. First, it increases the flexibility of the algorithm in track-
ing the variations in the formation of the clusters that occur from
iteration to iteration. Second, it renders APCM capable to unravel
the physical clusters that exist, provided that APCM starts with a
reasonable overestimate of their number. This is carried out through
a cluster elimination procedure, which eliminates clusters gradu-
ally as the algorirthm evolves, making thus possible the reduction
of the initially estimated number of clusters. In [13], the proposed
Sparse Possibilistic C-Means (SPCM) algorithm exploits sparsity in
the clustering framework. Sparsity is related to the fact that a data

pointmay be compatiblewith one or only a few (or even none) clus-
ters. SPCM exhibits increased immunity to noisy data points and
outliers, by excluding them from contributing to the estimation of
the cluster representatives. Thus, SPCM concludes to more accu-
rate estimates for the cluster representatives, especially in noisy
environments. Note that the fusion of the sparsity of SPCM and
the adaptivity of γ ’s of APCM, gave rise to the Sparse Adaptive
Possibilistic C-Means (SAPCM) [13] that inherits the nice features
from both its ancestors.

All hitherto mentioned algorithms assume the case where the
data points are spread isotropically around certain central points,
that is, they form compact and hyper-spherically shaped clusters.
However, in the case of compact hyperellipsoidally shaped clus-
ters, although the above algorithms are able to move the cluster
representatives towards the center of dense in data regions, they
may fail to capture the "shape" of the clusters, by classifying incor-
rectly the points at the "tails" of the hyper-ellipsoids (see Fig. 1). If,
in addition, clusters of the above shape have coincident centers but
different "orientations" in space (see Fig. 2), the above algorithms
are very likely to fail in identifying them.

In the sequel, we broaden the focus to the general casewhere the
points may not be spread isotropically around certain points, that
is, they may form compact and hyper-ellipsoidally shaped clus-
ters. This possibility has been studied in [10], where MinimumVol-
ume Ellipsoids (MVE) clustering method allocates data points into
clusters in a way that minimizes the geometric mean of the vol-
umes of each cluster covering ellipsoids. Also, the issue of hyper-
ellipsoidally shaped clusters is treated by the Gaussian Mixture
Model (GMM), utilizing the expectation-minimization (EM) algo-
rithm [11].

In this paper, we generalize the classical PCM algorithm ([7]) to
handle the general case of hyper-ellipsoidally shaped clusters. In
addition, motivated by [12], we extend the parameter adaptivity
concept during the execution of the proposed algorithm, in order
the algorithm to be able to unravel on its own the actual hyper-
ellipsoidal shape of the clusters.

The paper is organized as follows. In Section 2, a brief overview
of the PCM ([7]) and APCM [12]) is given, while in Section 3, the
proposed Generalized Adaptive Possibilistic C-Means (GAPCM) al-
gorithm is derived. Section 4 contains experimental results con-
ducted on both artificially generated and real data sets (blind source
separation application) that validate the algorithm. Finally, Section
5 concludes the paper.

2 BRIEF REVIEW OF PCM AND APCM
Let X = {xi ∈ ℜl , i = 1, . . . ,N } be a set of N l-dimensional data
vectors to be clustered and Θ = {θ j ∈ ℜl , j = 1, . . . ,m} be a set
of m l-dimensional vectors that will be used as representatives of
the clusters formed by the points in X . Moreover, letU = [ui j ], i =
1, . . . ,N , j = 1, . . . ,m be an N × m matrix whose (i, j) element
stands for the so called degree of compatibility of xi with the jth
cluster, denoted byCj and represented by the vector θ j . Finally, let
uTi = [ui1, . . . ,uim ] be the ith row ofU that contains the degrees of
compatibility of xi for all them clusters. In what follows, Euclidean
norms are denoted by ∥ · ∥.

According to [7], the ui j ’s should satisfy the conditions,
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(C1) ui j ∈ [0, 1], i = 1, . . . ,N , j = 1, . . . ,m,

(C2) max
j=1, ...,m

ui j > 0, i = 1, . . . ,N , and

(C3) 0 <
N∑
i=1

ui j ≤ N , j = 1, . . . ,m.

2.1 Possibilistic C-Means - PCM
The updating equations for ui j ’s and θ j ’s in PCM result from the
minimization of the following cost function1

JPCM (Θ,U ) =
m∑
j=1

[ N∑
i=1

ui j ∥xi − θ j ∥2 + γj
N∑
i=1

(ui j lnui j − ui j )
]
,

(1)
where the parameterγj is associatedwith the clusterCj , j = 1, ...,m.
Minimizing with respect to ui j and θ j , i = 1, . . . ,N , j = 1, . . . ,m
we end up with

ui j = exp

(
−
∥xi − θ j ∥2

γj

)
(2) θ j =

∑N
i=1 ui jxi∑N
i=1 ui j

(3)

The parameters γj , j = 1, . . . ,m are a priori estimated and kept
fixed during the execution of PCM. A common strategy for their
estimation is to run the FCM algorithm first and set

γj =

∑N
i=1 u

FCM
ij ∥xi − θ j ∥2∑N
i=1 u

FCM
ij

, j = 1, . . . ,m, (4)

where θ j ’s and uFCMij ’s are the final FCM estimates for cluster rep-
resentatives and ui j coefficients, respectively. Note that γj can be
considered as a measure of the variance of cluster Cj around its
representative. Alternatively, γj measures the "range of influence"
of clusterCj around its representative. The basic steps of PCM are
given below.

Algorithm 1 [Θ,U ] = PCM(X ,m)
Require: X ,m
1: t = 0
◃ Initialization of θ j ’s part
2: Initialize Θ(t), U FCM (t) via FCM
◃ Determination of γj ’s part

3: γj =

∑N
i=1 u

FCM
i j (t )∥xi−θ j (t ) ∥2∑N
i=1 u

FCM
i j (t ) , j = 1, . . . ,m

4: repeat
◃ Update U part

5: ui j (t) = exp
(
− ∥xi−θ j (t ) ∥2

γj

)
, i = 1, . . . ,N , j = 1, . . . ,m

6: t = t + 1
◃ Update Θ part

7: θ j (t) =
∑N
i=1 ui j (t−1)xi∑N
i=1 ui j (t−1)

, j = 1, . . . ,m

8: until the difference in θ j ’s between two successive iterations
becomes sufficiently small

9: return Θ = {θ1(t),θ2(t), . . . ,θm(t)},U = [ui j (t − 1)]

1An alternative PCM algorithm, resulting from the optimization of a different cost
function is given in [6].

2.2 Adaptive Possibilistic C-Means - APCM
The APCM algorithm stems from the optimization of the cost func-
tion of the original PCM (eq. (1)), by setting

γj =
η̂

α
ηj , (5)

where parameter ηj is a measure of the mean absolute deviation of
the current form of cluster Cj , η̂ is a constant defined as the min-
imum among all initial ηj ’s, η̂ = minj ηj and α is a user-defined
positive parameter that gives the algorithm the agility to deal well
with closely located clusters. Specifically, larger values for parame-
ter α are suitable for closer located. The parameter α usually takes
values around 1. In principle, APCM is robust to α (see also [12]).

APCM is initialized with an overestimate of the number of nat-
ural clustersm, denoted bymini . To this end, the initialization of
θ j ’s is carried out using the final cluster representatives obtained
from the FCM algorithm, when the latter is executed with mini
clusters. After the initialization of θ j ’s, ηj ’s are initialized as fol-
lows:

ηj =

∑N
i=1 u

FCM
ij ∥xi − θ j ∥∑N
i=1 u

FCM
ij

, j = 1, . . . ,mini , (6)

where θ j ’s and uFCMij ’s in eq. (6) are the final parameter estimates
obtained by FCM.

Minimizing eq. (1) with respect to ui j and θ j , we end up with
the same equations as in PCM, that is eqs. (2), (3). However, the dif-
ference between APCM and PCM in the treatment of γj ’s is that in
APCM γj ’s have different definition from PCM (see eq. (5)), while,
in addition, they are no longer constant but they are adapted at
each iteration of the algorithm (through ηj ’s, see line 12 of Alg. 2).
Moreover, APCM provides also a mechanism for pruning clusters
as it evolves, which is related to the adaptation of γj ’s that takes
into account only the most compatible to cluster Cj data points2.
The APCM algorithm is given below.

Algorithm 2 [Θ, U ] = APCM(X ,mini , α )
Require: X ,mini , α
1: t = 0
◃ Initialization of θ j ’s part
2: Initialize Θ(t), U FCM (t) via FCM
◃ Determination of γj ’s part

3: ηj (t) =
∑N
i=1 u

FCM
i j (t )∥xi−θ j (t ) ∥∑N
i=1 u

FCM
i j (t ) , j = 1, . . . ,mini

4: η̂ = minj=1, ...,mini ηj (t)
5: m(t) =mini
6: repeat
7: γj (t) = η̂ηj (t)/α , j = 1, . . . ,m(t)
◃ Update U part

8: ui j (t) = exp
(
− ∥xi−θ j (t )∥2

γj (t )

)
, i = 1, . . . ,N , j = 1, . . . ,m(t)

◃ Update Θ part

9: θ j (t + 1) =
∑N
i=1 ui j (t )xi∑N
i=1 ui j (t )

, j = 1, . . . ,m(t)

2A vector xi is considered to be most compatible with cluster Cj , if ui j =
maxr=1, . . .,m uir .
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10: Remove Cj , j = 1, . . . ,m(t) if there is no xi that is most
compatible with it, decreasem(t) tom(t + 1) and renumber
Θ and the columns of U , accordingly

11: µj (t) = 1
nj (t )

∑
xi :ui j (t )= max

r=1, . . .,m(t+1)
uir (t ) xi , j =

1, ...,m(t + 1)
12: ηj (t + 1) = 1

nj (t )
∑
xi :ui j (t )= max

r=1, . . .,m(t+1)
uir (t ) ∥xi − µ j (t)∥,

j = 1, ...,m(t + 1)
13: t = t + 1
14: until the difference in θ j ’s between two successive iterations

becomes sufficiently small
15: return Θ = {θ1(t),θ2(t), . . . ,θm(t)},U = [ui j (t − 1)]

3 THE PROPOSED METHOD - GENERALIZED
ADAPTIVE POSSIBILISTIC C-MEANS
ALGORITHM (GAPCM)

In this section, we describe in detail the proposed GAPCM cluster-
ing algorithm,which copeswith the general case of hyper-ellipsoidal
clusters in the feature space. To understand how the generalization
is carried out let us write eq. (1) in the following slightly different
form

J (Θ,U ) =
m∑
j=1

[ N∑
i=1

ui j (xi − θ j )T (γ−1j I )(xi − θ j )+

+

N∑
i=1

(ui j lnui j − ui j )
]
. (7)

Replacing the quantity γ−1j I with αΣ−1j , where Σj is the covariance
matrix associated with cluster Cj and α plays the same role as in
APCM algorithm, the cost function associated with GAPCM is

JGAPCM (Θ,U ) =
m∑
j=1

[ N∑
i=1

ui j (xi − θ j )T αΣ−1j (xi − θ j )+

+

N∑
i=1

(ui j lnui j − ui j )
]
. (8)

In contrast to PCM and APCM, the introduction of covariance
information Σj makes the algorithm capable to deal with clusters
that are not spread isotropically towards all directions around their
representatives. This renders GAPCM capable of dealing with sub-
space clustering (in cases where the spread around some principal
directions is almost zero, see Fig. 3). In addition, through parameter
α , GAPCM is able to control the range of influence of the hyper-
ellipsoidal clusters around their representatives, towards the prin-
cipal directions, as defined by Σj . In particular, in more demand-
ing data sets, which contain very closely located natural clusters,
larger values for the parameter α should be chosen, compared to
cases of less closely located clusters, in order to discourage the
movement of a representative from one dense region to another.

3.1 Parameter initialization in GAPCM
In the initialization phase of GAPCM, we generatemini initial rep-
resentatives, based on themini "most distant" points in the data set,

−14 −13 −12 −11 −10 −9 −8 −7 −6

37

38

39

40

41

42

43

x

y

 

 

Cluster 1

(a) 1-dim cluster in 2-dim space

−20
−15

−10
−5

0

30
35

40
45

50
0

5

10

15

20

25

30

35

40

 

 

Cluster 1

(b) 2-dim cluster in 3-dim space

Figure 3: Cluster cases where the spread around some principal
directions are almost zero.

denoted by θ j , j = 1, . . . ,mini , as they are defined by the MaxMin
procedure in [8]. In the sequel we calculate the grade of member-
ships of all xi ’s with each θ j , j = 1, . . . ,mini as FCM algorithm
indicates, in order to initialize ui j ’s, i = 1, . . . ,N , j = 1, . . . ,mini .

After the initialization of the cluster representatives θ j ’s and
ui j ’s, the covariance matrices Σj ’s of all clustersCj ’s are initialized
as follows:

Σj =

∑N
i=1 ui j (xi − θ j )(xi − θ j )T∑N

i=1 ui j
, j = 1, . . . ,mini . (9)

3.2 Parameter adaptation in GAPCM
In GAPCM algorithm, all parameters are adapted during its execu-
tion. More specifically, this refers to, (a) the degrees of compatibil-
ityui j ’s and the cluster representatives θ j ’s, (b) the Σj ’s and (c) the
number of clustersm, with (b) and (c) being achieved through two
interrelated processes.

As far as the updating ofui j ’s is concerned,minimizing JGAPCM
(Θ,U ) (eq. (8)) with respect to ui j , i = 1, . . . ,N , j = 1, . . . ,m, we
end up with the following expression

ui j = exp
(
−(xi − θ j )T αΣ−1j (xi − θ j )

)
. (10)

In addition, the updating of θ j ’s is done as in the original PCM
scheme according to eq. (3).

Motivated by APCM, Σj ’s in GAPCM are adapted at each iter-
ation of the algorithm. More specifically, we propose to compute
Σj of a cluster Cj , j = 1, ...,m as the covariance matrix of the data
vectors that are most compatible to cluster Cj , i.e.,

Σj =

∑
xi :ui j= max

r=1, . . .,m
uir (xi − µ j )(xi − µj )T

nj
, (11)

where nj denotes the number of the data points xi that are most
compatible with cluster Cj and µ j the mean vector of these data
points3.

Note that, as eq. (10) indicates, matrix Σj is required to be in-
vertible,. To this end, at each iteration t of the algorithm we ex-
amine whether the rank of matrix Σj , j =, . . . ,m is less than the
3Note that in the adaptationmechanism of Σj , µ j is used instead ofθ j . This is because
only most compatible to Cj points are taken into account, whose mean vector is µ j
and not θ j .
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dimensionality l . If this is the case, the associated clusterCj is elim-
inated andU and Θ are updated accordingly. As a result, the num-
ber of current clusters is reduced. This is the cluster elimination
mechanism that adjusts the number of clustersm, as the algorithm
evolves. In the sequel, the GAPCM algorithm is stated explicitly.

Algorithm 3 [Θ,U ] = GAPCM(X ,mini , α )
Require: X ,mini , α
1: t = 0
◃ Initialization part
2: Find themini "most distant" points θ j (t)’s, j = 1, . . . ,mini in

X as in [8].
3: Calculate ui j (t), i = 1, ...,N , j = 1, ...,mini via the related

equation of FCM.
◃ Determination of Σj ’s part

4: Σj =
∑N
i=1 ui j (xi−θ j )(xi−θ j )T∑N

i=1 ui j
, j = 1, . . . ,mini ,

5: m(t) =mini
6: repeat
◃ Update U part

7: ui j (t) = exp
(
−(xi − θ j (t))T αΣj (t)−1(xi − θ j (t))

)
, i =

1, . . . ,N , j = 1, . . . ,m(t)
◃ Update Θ part

8: θ j (t + 1) =
∑N
i=1 ui j (t )xi∑N
i=1 ui j (t )

, j = 1, . . . ,m(t)
9: RemoveCj if rank (Σj ) < l , decreasem(t) tom(t + 1) and

renumber Θ and the columns ofU , accordingly
10: µj (t) = 1

nj (t )
∑
xi :ui j (t )= max

r=1, . . .,m(t+1)
uir (t ) xi , j =

1, ...,m(t + 1)

11: Σj (t + 1) =

∑
xi :ui j (t )= max

r=1, . . .,m(t+1)
uir (t )

(xi−µ j (t ))(xi−µ j (t ))T

nj (t ) ,
j = 1, ...,m(t + 1)

12: t = t + 1
13: until the difference in θ j ’s between two successive iterations

becomes sufficiently small
14: return Θ = {θ1(t),θ2(t), . . . ,θm(t)},U = [ui j (t − 1)]

Focusing on the definition of Σj ’s in the proposed updatingmech-
anism from eg. (11), recall that only the data vectors that are most
compatible to cluster Cj are taking into account. This particular-
ity is responsible for succeeding cluster elimination. In order to
gain some insight into the way GAPCM eliminates clusters, let us
focus on a single physical cluster. To further ease the discussion,
let us assume that all data vectors form a single physical cluster
and two representatives θ1, θ2 have been moved iteratively by the
algorithm to its center (see Fig. 4). Consider also the possibilistic
nature of GAPCM, that is, all representatives are moved towards
the centers of their closest dense in data regions (physical clusters),
independently from each other. Loosely speaking, between coinci-
dent cluster representatives that represent the same physical clus-
ter, one of them, say θ2 will have stronger influence around it than
the other (θ1)4. In the example of Fig. 4, both θ1 and θ2 are moved
towards the center of the physical cluster. However, the influence
of clusterC2 is stronger than that ofC1, thus all the data points of
4As is defined by the eigenvalues of the Σj ’s.

−14 −13 −12 −11 −10 −9 −8 −7 −6
37

38

39

40

41

42

43

x

y

 

 

Cluster 1
Cluster 2

θ
1

θ
2

(a) Stage 1

−14 −13 −12 −11 −10 −9 −8 −7 −6
37

38

39

40

41

42

43

x

y

 

 

Cluster 1
Cluster 2

θ
1

θ
2

(b) Stage 2

−14 −13 −12 −11 −10 −9 −8 −7 −6
37

38

39

40

41

42

43

x

y

 

 

Cluster 1
Cluster 2

θ
1

θ
2

(c) Stage 3

−14 −13 −12 −11 −10 −9 −8 −7 −6
37

38

39

40

41

42

43

x

y

 

 

Cluster 1

θ
1

(d) Stage 4

Figure 4: Cluster elimination stages.

the physical cluster will gradually become most compatible with
C2. Thus, at a stage where cluster C1 will have no (or less than l )
compatible points within it, it will be eliminated, leaving only one
representative representing the specific physical cluster (θ2) (see
Fig. 4d)5.

4 EXPERIMENTAL RESULTS
In this section we assess the performance of GAPCM by compar-
ing it with other relative algorithms, on the basis of both simulated
and real cases. More specifically, in the first part of this section, we
compare the clustering performance of GAPCM with that of the
k-means [5], the PCM [7], the APCM [12] and the GMM [11] al-
gorithm, in two synthetic experimental data sets and we illustrate
the obtained results. In order to compare a clustering with the true
data label information, we use the Success Rate (SR), which mea-
sures the percentage of the points that have been correctly labeled
by each algorithm. Finally, the number of iterations (Iter) and the
time (in seconds) required for the convergence of each algorithm,
are provided6. In the second part of this section, we describe in de-
tail a specific audio blind source separation application and we as-
sess the performance of the proposed method in two experiments
of real audio data sets.

4.1 Synthetic Data Sets
Experiment 1: Let us consider a two-dimensional data set consist-
ing of N = 14000 points, which form four physical clusters C1, C2,
C3 and C4 (Fig. 5a). Each cluster is modelled by a normal distribu-
tion. The means of the distributions are c1 = c2 = [−10, 80]T , c3 =
[−10, 40]T and c4 = [30, 80]T respectively, while their covariance

5Note that this scenario should not be confused with cases like the one of Fig. 2 where
two distinct physical clusters with coincident cluster centers exist.
6All the experiments have been conducted on a workstation of Intel i7-4790 with 16
GB RAM and 3.60 GHz.
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Figure 5: (a) Data set of experiment 1. Clustering results for (b) k-
means,m = 4, (c) PCM,mini = 10, (d) APCM,mini = 10 and α = 1,
(e) GMM,m = 4 and (f) GAPCM,mini = 10 and α = 1.

matrices are set to Σ1 =

[
100 10
10 2

]
, Σ2 =

[
50 −100

−100 225

]
,

Σ3 =

[
100 −10
−10 2

]
, and Σ4 =

[
50 100
100 225

]
, respectively. A

number of 2000 points are generated by the first and the third
distributions and 5000 points are generated by the other two dis-
tributions. Note that the centers of C1 and C2 coincide and the
"tails" of the ellipsoids of C2, C3 and C4 are partially overlapped.
Table. 1 shows the clustering results of all algorithms wheremini
andmf inal denote the initial and the final number of clusters, re-
spectively. Fig. 5 illustrates the best clustering results obtained by
each algorithm, with its parameters chosen as stated in the figure
caption.

As it can be deduced from Fig. 5 and Table. 1, even when the
k-means is initialized with the actual number of clusters (m = 4),
it fails to distinguish cluster C1 from C2, due to their coincident
centers, thus splitting physical clusterC4 to two clusters. The clas-
sical PCM fails to detect any clustering structure. The APCM al-
gorithm identifies the centers of the three out of the four clusters,
failing in distinguishing the clusters with the coincident centers
(C1 and C2). In addition, it fails to unravel the real "shape" of the

identified clusters. Finally, GMM and GAPCM produce very accu-
rate results identifying correctly all physical clusters. However, it
is highlighted the fact that, in contrast to GMM where the actual
number of clusters is a pre-requisite, no such requirement is im-
posed by GAPCM.

Table 1: Performance of all algorithms for the experiment 1 data
set.

mini mf inal SR(%) I ter T ime (secs)
k-means 10 10 37.18 43 0.30
k-means 4 4 62.86 21 0.14
PCM 10 1 35.71 22 1.31
PCM 15 1 35.71 23 2.03
APCM (α = 1) 10 3 80.35 36 0.33
APCM (α = 1) 15 3 80.57 82 0.66
GMM 10 10 56.44 166 1495(!)
GMM 4 4 96.28 22 77.10
GAPCM (α = 1) 10 4 96.16 41 124
GAPCM (α = 1) 15 4 96.17 46 152

Experiment 2: Let us now consider a three-dimensional data
set consisting of N = 8000 points, which form three physical clus-
ters C1, C2 and C3 (Fig. 6a, 6b, 6c). Each cluster is modelled by
a normal distribution. The means of the distributions are c1 =
[12, 15, 5]T , c2 = [10, 10, 10]T and c3 = [15, 12, 10]T respectively,

while their covariancematrices are set to Σ1 =

0.1 0.5 0.4
0.5 5 0.5
0.4 0.5 10

 ,
Σ2 =


5 2 0.8
2 3 0.2
0.8 0.2 4

 and Σ3 =


10 0 0
0 0.1 0
0 0 0.1

 , respec-
tively. A number of 2000 points are generated by the first distribu-
tion, 5000 points are generated by the second one and 1000 points
by the third one. Note that the points of the cluster C1 lie around
a plane, the points of the clusterC2 form a 3-dimensional ellipsoid
and, finally, the points of the cluster C3 lie around a line in the
3-dimensional space. Table. 2 shows the clustering results of all al-
gorithms and Fig. 6 illustrates the best clustering results obtained
by each algorithm, with its parameters chosen as stated in the fig-
ure caption. Specifically, the first column in Fig. 6 illustrates the
1st and 2nd dimensions of the data set, the second column illus-
trates the 1st and 3rd dimensions and the third column illustrates
the 2nd and 3rd dimensions of the data set, in order to get a bet-
ter visualization of the clusters and of the clustering results of the
algorithms in the 3-dimensional space.

As it can be deduced from Fig. 6 and Table. 2, when k-means is
initialized with the actual number of clusters (m = 3), it manages
to identify correctly the cluster centers, however, it fails to classify
correctly the data points to the three detected clusters. The PCM
exhibits degraded performance, for all choices ofmini . Similar to
PCM is the behaviour observed for the APCM algorithm, which
also fails to distinguish any clustering structure. On the contrary,
GAPCM and GMM (the latter only given the actual number of clus-
ters) exhibit superior performance compared to other algorithms,
detecting correctly all the underlying clusters of various shapes.
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(d) k-means (1st and 2nd dimensions)
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(e) k-means (1st and 3rd dimensions)
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(f) k-means (2nd and 3rd dimensions)
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(l) APCM (2nd and 3rd dimensions)
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(m) GMM (1st and 2nd dimensions)
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Figure 6: (a-c) Data set of experiment 2. Clustering results for (d-f) k-means,m = 3, (g-i) PCM,mini = 5, (j-l) APCM,mini = 5 and α = 1,
(m-o) GMM,m = 3 and (p-r) GAPCM,mini = 10 and α = 1.

Table 2: Performance of all algorithms for the experiment 2 data
set.

mini mf inal SR(%) I ter T ime (secs)
k-means 5 5 50.20 35 0.14
k-means 3 3 78.39 18 0.20
PCM 10 1 62.50 11 0.41
PCM 5 1 62.50 8 0.17
APCM (α = 1) 10 1 62.50 16 0.09
APCM (α = 1) 5 1 62.50 13 0.06
GMM 10 10 43.58 512 2726(!)
GMM 3 3 95.96 19 30.92
GAPCM (α = 1) 10 3 93.06 51 67.7
GAPCM (α = 1) 5 3 93.05 41 50.2

4.2 Application to Blind Source Separation
Problem

A common problem that is met in several applications is the sep-
aration of the original signals coming from differnet sources, out
of mixtures of them. The formation for the audio source separa-
tion case is as follows: we have in the same roomm audio signal
sources andqmicrophones that recordmixtures of the signals emit-
ted from these sources. The aim is to recover the original signals
based on their mixtures recorded through the microphones. In this
section we show the potential usefulness of the GAPCM algorithm
in this application. Formally speaking (ignoring time delays and
reverberations), let sj (n) be the value of the j-th source at time n,
j = 1, . . . ,m, xk (n) the value recorded from the k-th microphone
at time n, k = 1, . . . ,q , ajk the coefficient that measures the con-
tribution of the j-th source to the k-th audio mixture and ek (n) is
the (additive) noise associated with the k-th microphone, which is
assumed to be zero mean. These quantities are combined via the
following equation7

xk (n) =
m∑
j=1

ajksj (n) + ek (n), k = 1, . . . ,q, n = 1, . . . ,N (12)

(where N is the number of mixed samples recorded at each micro-
phone) or, in matrix notation,

X = SA + E (13)

7For more details, see [9], from where the following formalism has been borrowed.
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Figure 7: (a) Audio signal of experiment 3 and (b) its association
with the speakers.

where X is a N × q matrix, whose k-th column contains the N
mixed samples recorded by microphone k , S and E are N ×m and
N × q matrices, respectively, defined accordingly and, finally, A is
them × q mixing matrix. Note that, the rows of X are aggregated
along m linear manifolds in the q-dimensional space, where the
row vectors of A specify their orientation.

In the sequel we consider the blind source separation problem
where both A and S are unknown and we show how GAPCM can
be used to assist the identification of S . First, we apply the GAPCM
algorithm for the rows of X , where each row corresponds to a sin-
gle point in the q dimensional feature space x1 − x2 − . . . − xq
and we identify the lines they form, through their corresponding
direction vectors and their intecepts w j ’s and w0j ’s, respectively.
We set aj equal to the eigenvector that corresponds to the mini-
mum eigenvalue of Σj , j = 1, . . . ,m. Then, to determine the ele-
ments of the matrix S we work as follows. For the i-th row vector
of X = [XT

1 | . . . |X
T
N ]T , we determine, among the m hyper-line

clusters in the x1 − . . . − xq space, the closest to it, say ir , and we
set Ŝi,ir = X iair

8 and Ŝis = 0, for s , ir .
Experiment 3: Consider the case of four audio sources (m = 4)

and twomicrophones (q = 2). Fig. 7a illustrates the mixtured audio
signal of the four sources and Fig. 7b highlights the contribution
of each speaker. Fig. 8a depicts the data corresponding to the four
audio sources in the 2-dimensional space, which form four lines
(one for each source). Fig. 8b shows the GAPCM clustering result,
detecting correctly all lines. Finally, Fig. 11 illustrates the results
8Keep in mind that X i is a row vector.
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(a) Audio signal in feature space
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Figure 8: (a) The audio signal of experiment 3, depicted in the
feature space and (b) the clustering result of GAPCM (mini = 5,
α = 1).

of GAPCM, where all audio sources are correctly identified. Note
that the correlation coefficient (Rj , j = 1, ..., 4) and themixing error
ratio (MERj , j = 1, ..., 4, see [4]) of each estimated source with the
original one are given in the caption of Fig. 11.

Experiment 4: Consider now the case of four audio sources
(m = 4) and three microphones (q = 3). Fig. 9a illustrates the
mixtured audio signal of the four sources and Fig. 9b highlights
the contribution of each speaker. As it can be deduced, in this par-
ticular experiment, there are several time stamps where two au-
dio sources are activated simultaneously (speaker 1 and 2). Recall-
ing arguments from experiment 3, we expect that the time stamps
where only one speaker is activated correspond to entries of X
that lie around a line (1-dimensional cluster). On the other hand,
the time stamps where two speakers are activated simultaneously,
correspond to entries of X that lie around a plane (2-dimensional
cluster) defined by the two 1-dimensional clusters of the associated
speakers (see Fig. 10a). As a result, five ellipsoidally shaped clus-
ters are formed (four 1-dimensional clusters and one 2-dimensional
cluster) by the data set in the 3-dimensional feature space. Ap-
plying GAPCM for this data set, we identify correctly all hyper-
ellipsoidal clusters. This result indicates an additional potentiality
of GAPCM, that is, its ability not to simply unravel clusters lying
around subspaces of the feature space, but also clusters whose asso-
ciated subspaces lie entirely to subspaces of other clusters. Return-
ing to the frame of the application considered in this experiment,
taking into consideration that each data point, initially classified
in the 2-dimensional cluster, has to be classified to its closest of
the 1-dimensional clusters, we work as follows. First, we consider
only the clusters, whose associated subspaces have dimensional-
ity 1 (cases where only one speaker is activated), by identifying
all the clusters Cj , j = 1, ...,m, whose Σj has all but one eigenval-
ues close to zero. Then, we assign the rest data points that do not
belong to these clusters, to their closest among these identified 1-
dimensional clusters. The final clustering result of GAPCM for the
experiment 4 is depicted in Fig. 10b. Finally, Fig. 12 illustrates the
source separation results utilizing GAPCM, which identifies all au-
dio sources with high accuracy, managing to satisfactorily distin-
guish the two speakers that were talking simultaneously on several
time stamps.
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Figure 9: (a) Audio signal of experiment 4 and (b) its association
with the speakers.
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Figure 10: (a) The audio signal of experiment 4, depicted in the
feature space and (b) the clustering result of GAPCM (mini = 10,
α = 1).

5 CONCLUSION
In this paper a generalized possibilistic c-means clustering algo-
rithm, calledGeneralizedAdaptive Possibilistic C-Means (GAPCM),
has been derived. The main feature of GAPCM is the adaptation
of its parameters during the execution of the algorithm, in order
GAPCM to successfully identify the centers and the actual "shapes"
of hyper-ellipsoidal clusters in the feature space. Compared to its
ancestor APCM, GAPCM is also able to unravel clusters whose
points lie around certain subspaces of the feature space. In addi-
tion, a cluster elimination procedure that GAPCM incorporates,
renders it able to detect the true number of physical clusters, m,
provided that it is initialized with an overestimate of it. The latter
releases GAPCM from the noose of knowing exactly in advance
the actual number of m. The experimental results on both simu-
lated and real data (blind source separation application) show that
GAPCM exhibits superior performance compared to several other
algorithms.
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Figure 11: (a-d) The audio signals of each speaker individually for experiment 3 and (e-h) their respective estimations by GAPCM.
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Figure 12: (a-d) The audio signals of each speaker individually for experiment 4 and (e-h) their respective estimations by GAPCM.
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