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ABSTRACT

This paper presents a variational Bayesian scheme for semi-
supervised unmixing on hyperspectral images that exploits
the inherent spatial correlation between neighboring pixels.
More specifically, a hierarchical Bayesian model that pro-
motes a joint-sparse profile on the abundance vectors of adja-
cent pixels is developed and a computationally efficient vari-
ational Bayes algorithm is incorporated to perform Bayesian
inference. The benefits of the proposed joint-sparse model are
demonstrated via simulations on both synthetic and real data.

Index Terms— spatial correlation, joint-sparse model,
semi-supervised unmixing, variational Bayesian inference

1. INTRODUCTION

Spectral unmixing (SU) has attracted considerable attention
in the signal processing literature in recent years. SU can be
considered as the process of identifying the spectrally pure
signatures (also called endmembers) present in a hyperspec-
tral scene, and the determination of their proportionate abun-
dances in each pixel, [1]. Recently, the exploitation of spatial
correlations in hyperspectral data as well as sparse representa-
tions of measured pixels have emerged as novel research ideas
for the SU problem. These ideas are based on the reasonable
assumptions that adjacent pixels in a hyperspectral scene are
in all probability mixed using the same materials, and that
any given pixel may be composed by only a few of the end-
members present in the scene. In this perspective, both these
assumptions have sparked a new interest in the SU problem
with the promise of producing better abundance estimation
results.

However, sparsity and spatial correlations cognizant SU
is a research field still at its infancy, although several methods
have been proposed lately that employ either one of the two
approaches, [2, 3]. In [2] a Bayesian model is presented that
imposes the concept of sparsity as well as the nonnegativity
constraint for the abundance estimation problem. A Bayesian
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approach is also presented in [3], where a Markov random
field is used to capture spatial correlations. Interestingly, a de-
terministic algorithm that employs both unmixing approaches
has been recently presented in [4]. The abundance estima-
tion problem is formulated either as a joint-sparse abundance
estimation problem incorporating the sparsity promoting `1-
norm, or as a low rank representation problem of the abun-
dance matrix.

In this paper we provide a Bayesian approach for the joint-
sparse abundance estimation problem. To this end, we pro-
pose a hierarchical Bayesian model that a) comprises conju-
gate prior distributions that facilitate posterior inference, b)
imposes the nonnegativity constraint on the abundance coef-
ficients, and c) imposes a joint sparse profile on the abundance
vectors that correspond to neighboring pixels. The proposed
model can be considered as an extension of the sparsity pro-
moting Bayesian model in [2] for enhancing unmixing with
spatial correlations. A variational Bayes algorithm is then
presented that performs inference for all model parameters.
Besides its fast convergence, the proposed variational Bayes
algorithm offers improved estimation performance, as veri-
fied by its application in homogeneous regions in both syn-
thetic and real hyperspectral data.

2. PROBLEM FORMULATION

Let y be a M × 1 dimensional vector containing the spec-
tral signature of a single pixel, where M is the number of
spectral bands. In this paper, we consider a sliding square
window centered at y and containing besides y its K − 1
closest neighboring pixels. Let Y denote the M × K ma-
trix that has as columns the spectral signatures yk’s of the
pixels in the window, Φ be an M ×N endmember matrix
whose columns correspond to pure materials’ spectra, and
W = [w1,w2, . . . ,wK ] be the N ×K matrix consisting of
K nonnegative abundance columnn vectors wk’s, where each
wk is the N -dimensional abundance vector corresponding to
the observed pixel yk

1. By assuming the linear mixing model,
the window’s measured pixels are mixed as

Y = ΦW +E, (1)

1Apparently, one of the yk’s coincides with y



where E is a M × K matrix of zero mean, independent and
identically distributed (i.i.d) Gaussian noise samples, with
precision β.

In this paper the semi-supervised SU framework is con-
sidered. In this regard we assume that the endmember matrix
Φ is known a priori, and that only a few of the N available
endmembers are present in each yk in Y. Thus, Y adopts a
sparse representation in Φ, expressed by a joint-sparse pro-
file on the abundance vectors wk’s (equivalently, W is a row
sparse matrix). Our goal is to estimate the abundance matrix
W, subject to the nonnegativity and sparsity constraints. To
this end, we develop a hierarchical Bayesian model that im-
poses both nonnegativity and sparsity constraints on the abun-
dance matrix W, and then, we present a fast variational Bayes
algorithm to perform posterior inference.

3. BAYESIAN MODELING

The likelihood function of the observations Y, determined by
the assumed i.i.d. Gaussian noise E in (1), is given by

p(Y | W, β) = N (Y | ΦW, β−1IMK)

=
K∏

k=1

βM/2

(2π)
M/2

exp

[
−β

2
‖yk −Φwk‖22

]
. (2)

In our Bayesian approach, the likelihood is complemented by
suitable priors for the model parameters {W, β}. As a prior
for noise precision β a conjugate Gamma distribution is as-
sumed, expressed as

p(β) = G(β; ρ, δ), (3)

where ρ and δ represent the shape and scale parameters re-
spectively (set to 10−6 in our experiments). For the abun-
dance matrix W, we define a two level hierarchical prior that
a) retains the conjugacy among the prior distributions, b) im-
poses a joint-sparse profile on the abundance vectors wk’s and
c) imposes nonnegativity. In the first level, a nonnegatively
truncated Gaussian prior is used for each wk, i.e.,

p(W|α, β) =
K∏

k=1

NRN
+

(
wk|0, β−1A−1

)
, (4)

where α = [α1, α2, . . . , αN ]> is the precision parameter vec-
tor common for all wk’s, A = diag(α) is the corresponding
diagonal matrix, and NRN

+
signifies the N -variate normal dis-

tribution truncated at the nonnegative orthant of RN , denoted
by RN

+ , [2]. Note from (4) that a single precision αn is used
for each row vector w>

n of W. In the second level of hier-
archy, the precision parameters αn follow a Gamma distribu-
tion, i.e.,

p(αn) = G(αn;κ, θ), (5)

where κ and θ are fixed hyperparameters (set to 10−6). Utiliz-
ing (4) and (5), and integrating out the precision parameters

αn’s, a heavy-tailed, nonnegatively truncated Student-t prior
distribution arises for W, expressed as

p(W) =
N∏

n=1

St+2κ(wT
n ;0,

θ

κβ
IK), (6)

where St+ν (w; ζ,Υ) denotes the nonnegatively truncated
multivariate Student-t distribution with location ζ, scale ma-
trix Υ and ν degrees of freedom. The heavy-tailed Student-t
distribution is widely known to promote sparsity. Notice in
(6) that independent K-variate nonnegative Student-t priors
are assigned to the rows wT

n ’s of W. Hence, our Bayesian
model imposes both a common sparsity profile for all abun-
dance column vectors wk’s as well as the nonnegativity
constraint on the abundance coefficients.

4. VARIATIONAL INFERENCE

The posterior distribution of W,α, β is expressed by the
Bayes’ rule as

p(W,α, β|Y) =
p(Y|W, β)p(W|α, β)p(α)p(β)∫

p(Y,W,α, β)dWdαdβ
. (7)

However, the integration at the denominator is intractable
and, hence, we need to resort to approximate methods. Vari-
ational approximation is an efficient optimization tool for
this task. Employing the mean-field theory, the posterior
p(W,α, β|Y) is approximated by a variational distribution
q(W,α, β), which is assumed to be of the factorized form

q(W,α, β) =

K∏
k=1

q(wk)

N∏
n=1

q(αn)q(β). (8)

The estimation of q(W,α, β) is carried out through the min-
imization of the Kullback-Leibler (KL) divergence between
the true posterior p(W,α, β|Y) and the q(W,α, β) itself.
The conjugacy of our Bayesian model in conjunction with the
assumed posterior independence of the model parameters pro-
vides an inference process that is tractable. Straightforward
computations (not shown here due to space limitations) yield
that the posterior for each wk is the truncated Gaussian dis-
tribution

q(wk) = NRN
+
(wk | µk,Σ), (9)

with

µk = 〈β〉ΣΦ>yk , and Σ = 〈β〉−1
(
Φ>Φ+A

)−1

, (10)

where the 〈·〉 operator, denotes expectation of a random quan-
tity with respect to the associated q(·). For each precision
parameter αn we get the following Gamma posterior

q(αn) = G
(
αn;

K

2
+ κ,

β〈w>
nwn〉
2

+ θ

)
, (11)



where w>
n refers to the row vectors of W. A conjugate

Gamma posterior is also obtained for the noise precision β,

q(β) = G
(
β;

K(M +N)

2
+ ρ,

1

2

K∑
k=1

〈‖yk −Φwk‖22〉+
1

2

K∑
k=1

〈w>
k Awk〉+ δ

)
. (12)

Note that each posterior distribution parameter in (9)-(10),
(11), (12), is expressed in terms of the expectations of the
remaining ones, that is, all parameters are interrelated. More
specifically, the expected values of the above parameters are

〈wnk〉 = µnktr ,
(
〈w2

nk〉 = µ2
nktr

+ σ2
ntr

)
(13)

〈αn〉 =
K + 2κ

〈β〉〈w>
nwn〉+ 2θ

(14)

〈β〉 = K(M +N) + 2ρ∑K
k=1〈‖yk −Φwk‖22〉+

∑K
k=1〈w>

k Awk〉+ 2δ
,

(15)

with

〈w>
nwn〉 =

K∑
k=1

〈w2
nk〉, 〈w>

k Awk〉 =
N∑

n=1

〈w2
nk〉〈an〉 (16)

〈‖yk −Φwk‖22〉 = ‖yk −Φµktr
‖22 +Trace{ΦΣtrΦ

>},
(17)

where wnk denotes the n-th element of wk, µktr
and Σtr are

the mean and covariance matrix of the truncated Gaussian dis-
tribution in (9), respectively, µnktr is the n-element of µktr

,
and σ2

ntr
is the n-th diagonal element of Σtr. Hence, a cyclic

iterative procedure can be established for the estimation of the
means of the parameters, involving (13), (14), (15).

To avert the computationally demanding task of estimat-
ing Σtr, the approximations 〈w2

nk〉 ≈ µ2
nktr

and 〈‖yk −
Φwk‖22〉 ≈ ‖yk − Φµktr

‖22, are used in our simulations.
Moreover, to obtain a fast approximation on the mean µktr

of
the multivariate truncated Gaussian in (9), we adopt the fast
approximation method proposed in [2, 5]. To this end, an iter-
ative scheme is utilized, that entails the cyclic computation of
the one dimensional means of the per-coordinate conditional
truncated Gaussian distributions2. The proposed joint-sparse
variational Bayes algorithm is detailed in Algorithm 1. The
convergence of the proposed scheme is ensured by the con-
vexity of the approximating distribution. Its complexity is
O(KN2) per iteration t. The algorithm needs only a few iter-
ations to converge and produces row sparse estimates for the
abundance matrix W, as expected. It should be further em-
phasized that in the proposed variational Bayes scheme, all
model parameters are directly inferred from the data and thus
there is no need for parameter cross validation or fine-tuning.

2More details on this approximation in [5]

Algorithm 1 The proposed variational Bayes algorithm
Inputs Y, Φ
Initialize β, α
T = Φ>Φ and Z = Φ>Y
for t = 1, 2, . . . do

V(t) = T+A(t)
for n = 1, 2, . . . , N do

Extract :v¬n(t) and υnn(t) from V(t)
σ∗2
n = 〈β〉−1/υnn

for k = 1, 2, . . . ,K do
µ∗
nk = 1

υnn

(
znk − v>

¬nµ¬nktr

)
〈wnk〉 ≡ µnktr = µ∗

nk +
1√
2π

exp(− 1
2

µ∗2
nk

σ∗2
n

)

1− 1
2 erfc(

µ∗
nk√
2σ∗

n
)
σ∗
n

end for
〈αn〉 = K+2κ

〈β〉〈w>
nwn〉+2θ

end for
〈β〉 = K(M+N)+2ρ∑K

k=1〈‖yk−Φwk‖2
2〉+

∑K
k=1〈w>

k Awk〉+2δ

end for

5. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the proposed
joint-sparse variational Bayes algorithm using both synthetic
and real hyperspectral data. The benefits of taking into ac-
count spatial correlations are exposed by comparing the pro-
posed joint-sparse algorithm a) to its single pixel counterpart,
where each pixel is unmixed without exploiting the informa-
tion from its adjacent neighbors (when Algorithm 1 is applied
for K = 1) , and the BiICE algorithm, proposed in [2]. In our
experiments we used a 3×3 window (i.e. K = 9). In addition,
we considered four performance measures. Specifically, root
mean square error (RMSE) and signal to reconstruction error
(SRE) measurements are used for the synthetic data set. On
the other hand, when the true abundance values are not avail-
able, reconstruction error (RE) measurements and the spectral
angle mapper (SAM) metric are used instead3.

To assess the accuracy of the proposed algorithm on the
unmixing of homogeneous regions, a hyperspectral image is
simulated according to the experimental settings of [4]. The
simulated image was generated using a total of twelve end-
member spectra, randomly selected from the USGS library,
[6]. It comprises 150× 150 pixels, with 25 homogeneous re-
gions of size 20 × 20. Each pixel is mixed using up to five
endmembers, with the homogeneous regions having no more
endmembers than the identically generated background pix-
els, as shown in Fig. 1(a). The unmixing results are provided
in Fig. 1(b). We observe that the proposed method outper-
forms its single pixel counterpart, both in terms of the RMSE
and SRE. Thus, it becomes evident that the exploitation of
the spatial information of homogeneous images can result in
improved abundance estimation performance.

Next, the Cuprite data set, [2, 3], is used to illustrate the

3Measure definitions can be found in [4].



(a) Synthetic Image

Single Pixel BiICE Joint Sparse
RMSE(10−2) 2.5013 2.5585 1.8621

SRE(dB) 13.8106 13.7952 13.8285
(b) Results

Fig. 1. Synthetic Image and its results

performance of the proposed scheme on real hyperspecral
data. In this case, the Vertex Component Algorithm, [7], is
first applied to the data set, in order to extract N = 12 pure
endmembers. Then, the proposed algorithm is applied to a
subregion in the Cuprite data set, highlighted by the rectan-
gular area in Fig. 2(a). The unmixing results are provided
in Fig. 2(b). Again it is confirmed that the utilization of the
existing spatial correlation in the selected area leads to higher
estimation accuracy for the joint-sparse model, as compared
to its single pixel variant, in terms of both the SAM and RE.

6. CONCLUSIONS

In this paper, a hierarchical Bayesian methodology for the
semi-supervised unmixing problem, where the spatial corre-
lation is taken into account, is introduced. As shown from the
experimental results, the embodiment of the spatial correla-
tion to our model leads to enhanced performance in terms of
the accuracy of the estimations, when working on homoge-
neous regions of the images.
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