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ABSTRACT

This paper proposes a semi-supervised unmixing method, which si-
multaneously exploits the abundance sparsity and spatial correlation
that are inherent in hyperspectral images. To capture spatial informa-
tion, a sliding window containing neighboring image pixels is first
defined. Then, a regularized optimization problem is defined that
incorporates a mixed penalty consisting of a sparsity inducing ¢,
norm and a matrix rank-penalizing weighted trace norm. To solve
the optimization problem, an efficient alternating direction method
of multipliers based algorithm is developed. Experimental results
conducted on both synthetic and real data illustrate the effectiveness
of the proposed algorithm.

Index Terms— sparse and low rank matrix estimation, abun-
dance estimation, ADMM, spectral unmixing, spatial correlation

1. INTRODUCTION

During the last decade spectral unmixing has rapidly caught the in-
terest of the signal processing community, [1]. Spectral unmixing is
the problem of decomposing the measured spectra of the pixels in a
hyperspectral image to a collection of pure materials’ spectra, called
endmembers, accompanied by their corresponding proportional per-
centages, called abundances. Actually, the steps of endmember ex-
traction and abundance estimation are considered as separate tasks in
the unmixing literature, each treated by a plethora of diverse meth-
ods.

In the following we focus on the abundance estimation problem.
We assume that a set of endmembers is known a priori and that the
pixels’ spectra are /inear combinations of these endmembers. Under
these assumptions, abundance estimation can be expressed as an in-
verse problem, subject to the physical constraint for abundance non-
negativity, [1, 2]. Interestingly, recent developments in compressive
sensing paved the way for the development of sparse abundance es-
timation methods, e.g., [2]. The rationale behind sparse methods is
that only a subset of the available endmembers will contribute to the
spectrum of a single pixel. Hence, the abundance coefficient vec-
tors shall be sparse, in the sense that they shall contain only a few
non-zero values. In a different research direction, abundance esti-
mation techniques have also benefited from the exploitation of the
spatial information of hyperspectral images, e.g., [3]. The underly-
ing assumption here is that adjacent pixels shall probably share the
same set of endmembers. By considering blocks of adjacent pixels,
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spatial correlation is reflected on the abundance fractions that form
a matrix, which is likely to be joint-sparse or low-rank.

In this work, we aspire to unite the aforementioned directions
and propose the estimation of the abundance matrix by simultane-
ously imposing the sparsity and low-rankness constraints on it. To
this end, we formulate a regularized least squares problem, where a
sparsity inducing ¢ -norm term is combined with a trace norm term,
which is known to penalize the matrix rank, [4]. Specifically, we
propose the utilization of weighted /1 and trace norms, which are
known to provide more robust estimates. To solve the resulting op-
timization problem, we develop an alternating direction method of
multipliers (ADMM), [5]. The proposed algorithm converges very
fast and performs better than state-of-the-art algorithms. Its estima-
tion performance is illustrated via simulations in both synthetic and
real hyperspectral data.

2. PROBLEM FORMULATION

Let us consider a hyperspectral image consisting of L spectral bands
and a square sliding window in the spatial dimension of the image
that contains K neighboring pixels. The spectral measurements of
the window pixels are L-dimensional vectors, denoted by yx, &k =
1,..., K. Moreover, we assume that a total of N endmembers
are present in the image. Let ¢, € ]Rfr denote the spectral sig-
nature of the ith endmember, while ® = [, p,,...,Px] and
Y = [y1,¥2,. .., Yk] are the matrices having as their columns the
N endmembers and the K spectral measurements of the window
pixels, respectively. Assuming the linear mixing model, the mea-
sured spectra of the pixels within the window are generated as

Y =3dW +E, ey

where W € Rf %K js the abundance matrix that has the N-
dimensional abundance vectors of the K pixels as its columns, and
E € R¥*¥ i an i.i.d., zero-mean Gaussian noise matrix. To com-
ply with the physical restrictions of our mixing model, we explicitly
impose a non-negativity constraint on the abundance coefficients,
W > 0, where the inequality > is to be understood element-wise.
Assuming that ® is known, we wish to estimate the abundance
matrix W, subject to the non-negativity constraint. This inverse
problem is well known in the spectral unmixing literature and has
been previously addressed by many methods, [1]. In this paper, we
impose two prominent requirements on the abundance matrix W,
namely a) low-rankness and b) sparsity.

The low-rankness of W is linked with the wish to exploit the
spatial information of the hyperspectral image. Indeed, a usual as-
sumption in image processing is that there is a high degree of correla-
tion between adjacent image pixels. Taking into account the mixing
model in (1), correlation is reflected in the abundance matrix W, in



the sense that adjacent columns of W are expected to share similar
abundance values. Hence, W is expected to be of low rank.

The sparsity requirement, that has first been introduced in [6],
relies on the assumption that only a few of the available endmem-
bers will contribute to the spectrum of a single pixel. This assump-
tion has permitted sparsity-driven unmixing techniques to prolifer-
ate, e.g. [2]. Sparsity is actually attributed to the abundance vectors,
that may have many zero or close to zero entries. Thus, it is natural
to expect that W will also be a sparse matrix.

At this point, we should notice that, to our knowledge, the con-
current imposition of sparsity and low-rankness has not been pre-
viously proposed for spectral unmixing. In [3], the low-rankness
property has been enforced by penalizing the nuclear norm |[W/||.
of W, which is defined as the sum of the singular values o; (W)
of W. Moreover, a widely used approach for imposing sparsity on
the abundance coefficients is to penalize the #1 norm of W, defined
as the sum of the absolute values of its elements. That said, and
according to [4], we define the following optimization problem

argmin, {1 - #WIE + 7| Wla 42 |WI. | @)
werj ¥ K

where v, 7 > 0 are parameters that control the trade-off among the
rank and sparsity regularization terms and the data fidelity term. The
optimization function in (2) is flexible enough to impose either one
of the two properties of W, depending on the values of the trade-off
parameters. We further propose a generalization of (2) that includes
the weighted nuclear and /1 norms, expressed as
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where a;j,b; > 0 are weighting coefficients. Utilizing (3) and (4),

the optimization problem becomes

argmin
NXxK
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The proposed optimization problem in (5) is convex but non-
differentiable, due to the additive norm terms. To minimize this
function we employ an alternating direction method of multipliers,
[5], which is described in the next section.

3. THE PROPOSED ADMM ALGORITHM

In this section we develop an instance of the alternating direction
method of multipliers that solves the abundance matrix estimation
problem in (5). First, we consider the augmented Lagrangian

Lo(W,Q1,Q,03,Q) = [|Q1 - Y% +7|A O Q|
+ (1923 (lb,« + 1ry (Q4) + tr [DlT (W — Ql)}
+tr [D3 (W = Q)] + tr [DJ (W — Q)]
+tr [D] (W= 20)] + £ (18w - @ + [W - 23
W — Q5% + [W — Qul[7) (6)

where Dq,D2,D3,D4 are matrices of Lagrange multipliers,
Iz, (z) = O(4o0) if z > O(x < 0), and x > 0 is a penalty
parameter. Let Q = (21, Q2, Q3, Q4),

L] I 0 0 0
_ | In _ 0 —Ir 0 0
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Then (6) can be written in a more compact form as
La(W, 9, A) = |90 = Y[[3 + 7|4 © Qs + 7o,
+1n, () + SIGW +BQ - AlF, @®)
where A = [A1 Ax As A4],A; = (1/p)Ds,i = 1,...,4 are the
scaled Lagrange multipliers. The optimization of L3(W, 2, A) is
now performed in alternating steps. In each step, £3(W,Q, A) is
minimized with respect to a single variable, while keeping the re-
maining variables fixed to their latest values. The Lagrange multi-
plies are also updated at the end of each updating cycle.
The subproblems that arise in the iterative procedure are easier
to handle. Specifically, the optimization with respect to W' gives
-1
witl = argn‘lhi/n L3(W, QA" = (@T'I) + 31)
(@7 (Qf +Al) + Q5 + AL+ Q4 + AL+ QL + AL (9

Next, minimization with respect to €25 is performed as
Qitt = argn{lziln L3(W'T QA
= ﬁ (Y +p (@W —AD)), (10)
while minimizing (8) with respect to Q22 we get
Qi = argrgiQn L3(WH Q AY
= SHR, o« (W' — AD), 11

where the soft-thresholding operator is defined as SHRs(z) =

sign(z)max(0, |x| — ), and 0 is a threshold parameter. s is

also computed by a shrinkage operation on the singular values of

Wit _ ALie.,

Qi = argnflzisn L3(W'H QA" = SVT, e (W — AY),

12)

where SVTs(X) = Udiag ({max (0,0:(X) —d;)}) V', and

X = Udiag({os(X)})V" is the singular value decomposition

(SVD) of X. Next, for the auxiliary variable €24, a projection onto
the nonnegative orthant is required,

Q1" = argmin L3(W', QA7) = I (W' — A, (13)
4

which is performed element-wise as IIg, (2:;) = max(0, zs;). Fi-
nally, the scaled Lagrange multipliers in A are sequentially updated
as follows

ATH = AT W' 4 !
A =AW L it =234 (14)



Algorithm 1 The alternating direction sparse and low-rank unmix-
ing algorithm
Inputs: Y,
Set parameters : u, T,y
Initialize : W°, ©°, A°
repeat
Wi = (7@ 4+31) 7 [ (QF + AY)
+Q5 + AL + Q5 + A%+ Qf + A
QU = 1/(1+ ) (Y + p (BW! — AL))
Q57 = SHR, o« (W' — A))
QL = SVT (W — AY)
Q4 =TT, (W' — AY)
AT = AL — W 4 Qff!
A =AW QI =234
until convergence
Output : Abundance matrix W = Wt!

The proposed alternating direction sparse and low-rank unmix-
ing algorithm (ADSpLRU) is detailed in Algorithm 1. An iteration
of ADSpLRU consists of the update steps given in (9), (10), (11),
(12), (13), and (14). The weights used in the norms of (11) and (12)
are based on the estimates of the previous iteration, i.e.,

al; = (é and, b} = ;>
Y\ wl - A e T\ oi(WE—AY) +e)’
(15)

where ¢ = 107'°. The ADSpLRU algorithm meets the general
convergence prerequisites discussed in [7]. In practice, it converges
within a few iterations. The stopping criterion is met when the norms
of the primal and dual residuals, R! = GW! 4+ BQ?, and, D =
pG B (QF — Q' 1), respectively, become sufficiently small, i.e.,

IR'||r < eand |[D'||r <e, (16)

where € = 0.5 x 107*,/(3N + L)K, c.f. [5]. The penalty param-
eter ;1 > 0 is also adjusted in each iteration, so as to keep the primal
and dual residual norms within a factor of ten of one another. The
scheme used is

2u',  if |[RY||F > 10| D||r
=2 pt/2, i R e < 10]D|p a7
wt, otherwise.

The computation complexity of the ADSpLRU is O(N? + K*®) per
iteration. The most demanding part of the computation involves the
singular value thresholding operation in (12).

4. EXPERIMENTAL RESULTS

In this section, the estimation performance of the proposed AD-
SpLRU algorithm is explored in a series of experiments conducted
on both simulated and real data. In all experiments, we compare the
proposed ADSpLRU algorithm with two state-of-the-art, ADMM
based unmixing schemes, namely, the non-negative constrained
sparse unmixing by variable splitting and augmented Lagrangian al-
gorithm (CSUnSAl+), [8], and the recently introduced non-negative
constrained joint-sparse MMV-ADMM, [3].

To quantify the estimation performance of the considered algo-
rithms, we employ two metrics. First, we define the mean square

error (MSE) as

T
P— 1 A7 . . 2
MSE = ﬁ;sz - wil, (18)

where w; and w; represent the estimated and the actual abundance
vectors of the i-th pixel, and 7" is the number of the pixels in the im-
age. The second metric is the signal-to-reconstruction error (SRE),
which reflects the ratio between the power of signal and the error,
and is given by the formula

19)
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4.1. Experiment on Synthetic Image

This experiment highlights the efficacy of the proposed method in
estimating abundance matrices that are in accordance with our as-
sumptions, i.e., they either have a sparse or a low-rank structure
or both. To this end, we generate a hyperspectral image using the
linear mixing model in (1). The endmember matrix ¢ comprises
N = 25 endmembers, that are randomly selected from the USGS
library, [9]. The reflectance values are measured in 224 spectral
bands, uniformly distributed in the interval 0.4 — 2.5pm. As shown
in Fig. 1a, the simulated hyperspectral image consists of 16 blocks
of size 10 x 10 each. Each one of the 4 ‘block’ rows of the image
is generated using an abundance matrix of specific structure. Specif-
ically, the first such row is generated by joint-sparse and low-rank
‘W’s, the second row is built using solely low-rank W’s, and finally,
rows 3 and 4 are produced by simultaneously sparse and low-rank
abundance matrices. In addition, in each ’block’ row, every 10 x 10
block is obtained using abundance matrices that have a different pro-
portion of non-zero values and different rank. The detailed descrip-
tion of the parameters used to generate each abundance matrix is
depicted in Table 1b. Finally, the image is also corrupted with white
i.i.d Gaussian noise at a SNR level of 30dB.

Table 1c contains the MSE and SRE results obtained by the
proposed ADSpLRU, as well as CSUnSAl+ and MMV-ADMM
algorithms. The sparsity-imposing parameter 7 of all three algo-
rithms and the low-rankness control parameter v of ADSpLRU were
fine-tuned with respect to MSE. Moreover, the parameter ;. of AD-
SpLRU and MMV-ADMM was set to 10™2. A quick comparison of
the results reveals that ADSpLRU outperforms both CSUnSAl+ and
MMV-ADMM algorithms in all rows of the synthetic image, both
in terms of MSE and SRE. Hence, we conclude that the proposed
method achieves better performance not only when both sparsity
and low-rankness are present, but also in the case where either one
of them prevails.

4.2. Experiment on Real data

In this section, the considered algorithms are applied on a real hy-
perspectral image, namely the AVIRIS Cuprite dataset, [2]. The ex-
amined scene consists of 14 endmembers that were extracted utiliz-
ing the minimum volume simplex analysis method (MVSA), [10].
The abundance maps of two endmembers estimated by ADSpLRU,
CSUnSAl+ and MMV-ADMM are shown in Fig. 2a, 2b and 2c,
respectively. A quantitative examination of the abundance maps re-
veals that all three algorithms provide comparable results. Exploit-
ing ground truth information on the Cuprite image, the endmembers
shown can be identified as muscovite and alunite in the left and right
columns in Fig. 2, respectively.
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column
row el ond 3rd g
joint sparse - 1% (4,1) (8,1) (12,1) (16,1)
low-rank - 27 (100,1) | (100,2) | (100,3) | (100,4)
sparse & low-rank - 377 (4,2) (8,2) (12,2) (16,2)
sparse & low-rank - 47" (4,3) (8,3) (12,3) (16, 3)

(b) Structure of W in each block of the synthetic image, each cell contains

the pair : (M%, rank(W))

W]

. row (15%) row (2%) row (3"%) row (4™%)
Algorithm | —rer =P MSE | SRE | MSE | SRE | MSE | SRE
CSunSal+ 0.09 | 17.99 | 1.53 | 1222 | 034 | 1435 | 029 | 15.16

MMV-ADMM || 0.07 | 18.70 | 1.78 | 11.69 | 041 | 12.80 | 0.29 | 14.39
ADSpLRU 0.01 | 3998 | 075 | 17.12 | 0.11 | 25.40 | 0.08 | 23.85

(c) MSE(10~2) and SRE(dB) results on synthetic image for each row.

(a) Synthetic Image, 4 x 4 blocks of 10 x 10 pixels

Fig. 1: Structure of Synthetic Image and Results
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